Citation: | Yang X. H., Chen Z. H., Xu H., Ma Y. Y., Zhang G. B., Zou D. B., Shao F. Q.. Hybrid PIC–fluid simulations for fast electron transport in a silicon target[J]. Matter and Radiation at Extremes, 2023, 8(3): 035901. doi: 10.1063/5.0137973 |
[1] |
M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626 (1994).10.1063/1.870664
|
[2] |
X. H. Yang, H. B. Zhuo, H. Xu, Z. Y. Ge, F. Q. Shao, M. Borghesi, and Y. Y. Ma, “Effects of filamentation instability on the divergence of relativistic electrons driven by ultraintense laser pulses,” Phys. Plasmas 23, 103110 (2016).10.1063/1.4966205
|
[3] |
A. Debayle, J. J. Honrubia, E. d’Humières, and V. T. Tikhonchuk, “Divergence of laser-driven relativistic electron beams,” Phys. Rev. E 82, 036405 (2010).10.1103/physreve.82.036405
|
[4] |
V. M. Ovchinnikov, D. W. Schumacher, M. McMahon, E. A. Chowdhury, C. D. Chen, A. Morace, and R. R. Freeman, “Effects of preplasma scale length and laser intensity on the divergence of laser-generated hot electrons,” Phys. Rev. Lett. 110, 065007 (2013).10.1103/physrevlett.110.065007
|
[5] |
L. Gremillet, D. Bénisti, E. Lefebvre, and A. Bret, “Linear and nonlinear development of oblique beam-plasma instabilities in the relativistic kinetic regime,” Phys. Plasmas 14, 040704 (2007).10.1063/1.2714509
|
[6] |
B. Hao, W. J. Ding, Z. M. Sheng, C. Ren, X. Kong, J. Mu, and J. Zhang, “Collisional effects on the oblique instability in relativistic beam-plasma interactions,” Phys. Plasmas 19, 072709 (2012).10.1063/1.4736980
|
[7] |
A. Bret, “Weibel, two-stream, filamentation, oblique, Bell, Buneman…which one grows faster?,” Astrophys. J 699, 990–1003 (2009).10.1088/0004-637x/699/2/990
|
[8] |
P. Norreys, D. Batani, S. Baton, F. N. Beg, R. Kodama, P. M. Nilson, P. Patel, F. Pérez, J. J. Santos, R. H. H. Scott, V. T. Tikhonchuk, M. Wei, and J. Zhang, “Fast electron energy transport in solid density and compressed plasma,” Nucl. Fusion 54, 054004 (2014).10.1088/0029-5515/54/5/054004
|
[9] |
A. P. L. Robinson, M. Sherlock, and P. A. Norreys, “Artificial collimation of fast-electron beams with two laser pulses,” Phys. Rev. Lett. 100, 025002 (2008).10.1103/PhysRevLett.100.025002
|
[10] |
C. T. Zhou, L. Y. Chew, and X. T. He, “Propagation of energetic electrons in a hollow plasma fiber,” Appl. Phys. Lett. 97, 051502 (2010).10.1063/1.3475414
|
[11] |
Y. Zeng, Y. Tian, C. Zhou, Z. Li, J. Liu, and Z. Xu, “Experimental study on laser-driven electron collimation along wire targets,” Phys. Plasmas 26, 012701 (2019).10.1063/1.5045270
|
[12] |
D. A. MacLellan, D. C. Carroll, R. J. Gray, N. Booth, M. Burza, M. P. Desjarlais, F. Du, D. Neely, H. W. Powell, A. P. L. Robinson, G. G. Scott, X. H. Yuan, C.-G. Wahlström, and P. McKenna, “Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt,” Phys. Rev. Lett. 113, 185001 (2014).10.1103/physrevlett.113.185001
|
[13] |
X. Vaisseau, A. Morace, M. Touati, M. Nakatsutsumi, S. D. Baton, S. Hulin, P. Nicolaï, R. Nuter, D. Batani, F. N. Beg, J. Breil, R. Fedosejevs, J.-L. Feugeas, P. Forestier-Colleoni, C. Fourment, S. Fujioka, L. Giuffrida, S. Kerr, H. S. McLean, H. Sawada, V. T. Tikhonchuk, and J. J. Santos, “Collimated propagation of fast electron beams accelerated by high-contrast laser pulses in highly resistive shocked carbon,” Phys. Rev. Lett. 118, 205001 (2017).10.1103/physrevlett.118.205001
|
[14] |
R. B. Campbell, J. S. DeGroot, T. A. Mehlhorn, D. R. Welch, and B. V. Oliver, “Collimation of PetaWatt laser-generated relativistic electron beams propagating through solid matter,” Phys. Plasmas 10, 4169 (2003).10.1063/1.1609444
|
[15] |
H. B. Cai, K. Mima, W. M. Zhou, T. Jozaki, H. Nagatomo, A. Sunahara, and R. J. Mason, “Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition,” Phys. Rev. Lett 102, 245001 (2009).10.1103/physrevlett.102.245001.
|
[16] |
X. H. Yang, H. Xu, Y. Y. Ma, F. Q. Shao, Y. Yin, H. B. Zhuo, M. Y. Yu, and C. L. Tian, “Propagation of attosecond electron bunches along the cone-and-channel target,” Phys. Plasmas 18, 023109 (2011).10.1063/1.3554651
|
[17] |
R. Kodama, Y. Sentoku, Z. L. Chen, G. R. Kumar, S. P. Hatchett, Y. Toyama, T. E. Cowan, R. R. Freeman, J. Fuchs, Y. Izawa, M. H. Key, Y. Kitagawa, K. Kondo, T. Matsuoka, H. Nakamura, M. Nakatsutsumi, P. A. Norreys, T. Norimatsu, R. A. Snavely, R. B. Stephens, M. Tampo, K. A. Tanaka, and T. Yabuuchi, “Plasma devices to guide and collimate a high density of MeV electrons,” Nature 432, 1005 (2004).10.1038/nature03133
|
[18] |
S. Kar, A. P. L. Robinson, D. C. Carroll, O. Lundh, K. Markey, P. McKenna, P. Norreys, and M. Zepf, “Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields,” Phys. Rev. Lett. 102, 055001 (2009).10.1103/PhysRevLett.102.055001
|
[19] |
H. Xu, X. H. Yang, J. Liu, and M. Borghesi, “Control of fast electron propagation in foam target by high-Z doping,” Plasma Phys. Controlled Fusion 61, 025010 (2019).10.1088/1361-6587/aaefce
|
[20] |
H. Xu, X. H. Yang, Z. M. Sheng, P. McKenna, Y. Y. Ma, H. B. Zhuo, Y. Yin, C. Ren, and J. Zhang, “Collimation of high-current fast electrons in dense plasmas with a tightly focused precursor intense laser pulse,” Nucl. Fusion 59, 126024 (2019).10.1088/1741-4326/ab45a2
|
[21] |
X. H. Yang, H. Xu, Y. Y. Ma, Z. Y. Ge, H. B. Zhuo, and F. Q. Shao, “Energy deposition of fast electrons in dense magnetized plasmas,” Phys. Plasmas 25, 063104 (2018).10.1063/1.5023779
|
[22] |
W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Magnetically assisted fast ignition,” Phys. Rev. Lett. 114, 015001 (2015).10.1103/PhysRevLett.114.015001
|
[23] |
M. Bailly-Grandvaux, J. J. Santos, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, J. E. Cross, R. Crowston, S. Dorard, J.-L. Dubois, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J.-R. Marquès, A. Morace, P. Nicolaï, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey, and Z. Zhang, “Guiding of relativistic electron beams in dense matter by laser driven magnetostatic fields,” Nat. Commun. 9, 102 (2018).10.1038/s41467-017-02641-7
|
[24] |
Y. Cao, X. H. Yang, T. P. Yu, Y. Y. Ma, M. Y. Yu, L. X. Hu, G. B. Zhang, H. Xu, and Y. Lang, “Transport of fast electron beam in mirror-field magnetized solid-density plasma,” Phys. Plasmas 28, 102701 (2021).10.1063/5.0055714
|
[25] |
J. R. Davies, A. R. Bell, M. G. Haines, and S. M. Guérin, “Short-pulse high-intensity laser-generated fast electron transport into thick solid targets,” Phys. Rev. E 56, 7193 (1997).10.1103/physreve.56.7193
|
[26] |
P. Antici, L. Gremillet, T. Grismayer, P. Mora, P. Audebert, M. Borghesi, C. A. Cecchetti, A. Mančic, and J. Fuchs, “Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets,” Phys. Plasmas 20, 123116 (2013).10.1063/1.4833618
|
[27] |
K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Hüller, “Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter,” Phys. Rev. E 62, 1202 (2000).10.1103/physreve.62.1202
|
[28] |
A. P. L. Robinson, H. Schmitz, and P. McKenna, “Resistivity of non-crystalline carbon in the 1–100 eV range,” New J. Phys. 17, 083045 (2015).10.1088/1367-2630/17/8/083045
|
[29] |
D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp, C. Bellei, M. M. Marinak, and M. H. Key, “Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields,” Phys. Plasmas 19, 072711 (2012).10.1063/1.4739294
|
[30] |
L. Spitzer, Physics of Fully Ionized Gasses (Wiley, 1962).
|
[31] |
X. H. Yang, C. Ren, H. Xu, Y. Y. Ma, and F. Q. Shao, “Transport of ultraintense laser-driven relativistic electrons in dielectric targets,” High Power Laser Sci. Eng. 8, e2 (2020).10.1017/hpl.2019.53
|
[32] |
S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulse,” Phys. Rev. Lett. 69, 1383 (1992).10.1103/physrevlett.69.1383
|
[33] |
F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, “A study of picosecond laser-solid interactions up to 1019 W/cm2,” Phys. Plasmas 4, 447 (1997).10.1063/1.872103
|
[34] |
M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102, 045008 (2009).10.1103/PhysRevLett.102.045008
|
[35] |
J. R. Davies, “Laser absorption by overdense plasmas in the relativistic regime,” Plasma Phys. Controlled Fusion 51, 014006 (2009).10.1088/0741-3335/51/1/014006
|
[36] |
J. S. Green, V. M. Ovchinnikov, R. G. Evans, K. U. Akli, H. Azechi, F. N. Beg, C. Bellei, R. R. Freeman, H. Habara, R. Heathcote, M. H. Key, J. A. King, K. L. Lancaster, N. C. Lopes, T. Ma, A. J. MacKinnon, K. Markey, A. McPhee, Z. Najmudin, P. Nilson, R. Onofrei, R. Stephens, K. Takeda, K. A. Tanaka, W. Theobald, T. Tanimoto, J. Waugh, L. Van Woerkom, N. C. Woolsey, M. Zepf, J. R. Davies, and P. A. Norreys, “Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas,” Phys. Rev. Lett. 100, 015003 (2008).10.1103/PhysRevLett.100.015003
|
[37] |
Y. T. Lee and R. M. More, “An electron conductivity model for dense plasmas,” Phys. Fluids 27, 1273 (1984).10.1063/1.864744
|
[38] |
R. M. More, “Pressure ionization, resonances, and the continuity of bound and free states,” Adv. At. Mol. Phys. 21, 305–356 (1985).10.1016/s0065-2199(08)60145-1
|
[39] |
L. Gremillet, G. Bonnaud, and F. Amiranoff, “Filamented transport of laser-generated relativistic electrons penetrating a solid target,” Phys. Plasmas 9, 941 (2002).10.1063/1.1432994
|
[40] |
A. Bret, M.-C. Firpo, and C. Deutsch, “Characterization of the initial filamentation of a relativistic electron beam passing through a plasma,” Phys. Rev. Lett. 94, 115002 (2005).10.1103/physrevlett.94.115002
|