Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 3
May  2023
Turn off MathJax
Article Contents
Ham Seunggi, Ryu Jonghyeon, Lee Hakmin, Park Sungbin, Ghim Y.-C., Hwang Y. S., Chung Kyoung-Jae. Estimation of plasma parameters of X-pinch with time-resolved x-ray spectroscopy[J]. Matter and Radiation at Extremes, 2023, 8(3): 036901. doi: 10.1063/5.0131369
Citation: Ham Seunggi, Ryu Jonghyeon, Lee Hakmin, Park Sungbin, Ghim Y.-C., Hwang Y. S., Chung Kyoung-Jae. Estimation of plasma parameters of X-pinch with time-resolved x-ray spectroscopy[J]. Matter and Radiation at Extremes, 2023, 8(3): 036901. doi: 10.1063/5.0131369

Estimation of plasma parameters of X-pinch with time-resolved x-ray spectroscopy

doi: 10.1063/5.0131369
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jkjlsh1@snu.ac.kr
  • Received Date: 2022-10-20
  • Accepted Date: 2023-02-20
  • Available Online: 2023-05-01
  • Publish Date: 2023-05-01
  • We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data. A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-ray spectra with a spectral resolution of ∼1 keV in the energy range of 1–10 keV. The synthetic spectra of Cu plasmas with different electron temperatures, electron densities, and fast electron fractions are calculated using the FLYCHK code. For quantitative comparison with the measured spectrum, two x-ray power ratios with three different spectral ranges are calculated. We observe three x-ray bursts in X-pinch experiments with two Cu wires conducted on the SNU X-pinch at a current rise rate of ∼0.2 kA/ns. Analysis of the spectra reveals that the first burst comprises x-rays emitted by hot spots and electron beams, with characteristics similar to those observed in other X-pinches. The second and third bursts are both generated by long-lived electron beams formed after the neck structure has been completely depleted. In the second burst, the formation of the electron beam is accompanied by an increase in the electron density of the background plasma. Therefore, the long-lived electron beams generate the additional strong x-ray bursts while maintaining a plasma channel in the central region of the X-pinch. Moreover, they emit many hard x-rays (HXRs), enabling the SNU X-pinch to be used as an HXR source. This study confirms that the generation of long-lived electron beams is crucial to the dynamics of X-pinches and the generation of strong HXRs.
  • loading
  • [1]
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part I,” Plasma Phys. Rep. 41(4), 291 (2015).10.1134/s1063780x15040054
    [2]
    T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer, “A review of projection radiography of plasma and biological objects in X-pinch radiation,” Plasma Phys. Rep. 42(3), 226 (2016).10.1134/s1063780x16030065
    [3]
    B. M. Song, T. A. Shelkovenko, S. A. Pikuz, M. A. Mitchell, K. M. Chandler, and D. A. Hammer, “X pinch X-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51(5), 2514 (2004).10.1109/tns.2004.835738
    [4]
    T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8(4), 1305 (2001).10.1063/1.1351553
    [5]
    T. A. Shelkovenko, S. A. Pikuz, A. R. Mingaleev, A. V. Agafonov, V. M. Romanova, A. E. Ter-Oganes’yan, S. I. Tkachenko, I. C. Blesener, M. D. Mitchell, K. M. Chandler, B. R. Kusse, and D. A. Hammer, “Accelerated electrons and hard X-ray emission from X-pinches,” Plasma Phys. Rep. 34(9), 754 (2008).10.1134/s1063780x08090109
    [6]
    V. L. Kantsyrev, D. A. Fedin, A. S. Shlyaptseva, S. Hansen, D. Chamberlain, and N. Ouart, “Energetic electron beam generation and anisotropy of hard x-ray emission from 0.9 to 1.0 MA high-Z X pinches,” Phys. Plasmas 10(6), 2519 (2003).10.1063/1.1572489
    [7]
    T. A. Shelkovenko, S. A. Pikuz, B. M. Song, K. M. Chandler, M. D. Mitchell, D. A. Hammer, G. V. Ivanenkov, A. R. Mingaleev, and V. M. Romanova, “Electron-beam-generated x rays from X pinches,” Phys. Plasmas 12(3), 033102 (2005).10.1063/1.1849798
    [8]
    V. L. Kantsyrev, D. A. Fedin, A. S. Shlyaptseva, M. D. Mitchell, B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, and L. M. Maxson, “Studies of energetic electrons with space and time resolution in Mo and W X-pinches from measurements of x rays >9 keV,” Rev. Sci. Instrum 75(10), 3708 (2004).10.1063/1.1785273.
    [9]
    V. Kantsyrev, A. Safronova, V. Ivanov, D. Fedin, R. Mancini, A. Astanovitsky, B. LeGalloudec, S. Batie, D. Brown, V. Nalajala, I. Shrestha, S. Pokala, N. Ouart, F. Yilmaz, A. Clinton, M. Johnson, T. Cowan, B. Jones, C. A. Coverdale, C. Deeney, P. D. LePell, D. Jobe, and D. Nielson, “Radiative properties of asymmetric and symmetric X-pinches with two and four wires recently produced on the UNR 1 MA Zebra generator,” J. Quant. Spectrosc. Radiat. Transfer 99(1–3), 349 (2006).10.1016/j.jqsrt.2005.05.028
    [10]
    A. S. Shlyaptseva, S. B. Hansen, V. L. Kantsyrev, D. A. Fedin, N. Ouart, K. B. Fournier, and U. I. Safronova, “Advanced spectroscopic analysis of 0.8–1.0-MA Mo x pinches and the influence of plasma electron beams on L-shell spectra of Mo ions,” Phys. Rev. E 67(2), 026409 (2003).10.1103/PhysRevE.67.026409
    [11]
    G. W. Collins, M. P. Valdivia, S. B. Hansen, F. Conti, L. C. Carlson, D. A. Hammer, A. Elshafiey, J. Narkis, and F. N. Beg, “Direct comparison of wire, foil, and hybrid X-pinches on a 200 kA, 150 ns current driver,” J. Appl. Phys. 129(7), 073301 (2021).10.1063/5.0035587
    [12]
    S. B. Hansen and A. S. Shlyaptseva, “Effects of the electron energy distribution function on modeled x-ray spectra,” Phys. Rev. E 70(3), 036402 (2004).10.1103/PhysRevE.70.036402
    [13]
    S. A. Pikuz, T. A. Shelkovenko, V. M. Ramanova, J. Abdallah, Jr., G. Csanak, R. E. H. Clark, A. Y. Faenov, I. Y. Skobelev, and D. A. Hammer, “Effect of an electron beam generated in an X-pinch plasma on the structure of the K spectra of multiply charged ions,” J. Exp. Theor. Phys. 85(3), 484 (1997).10.1134/1.558431
    [14]
    S. Ham, J. Ryu, S. Park, K.-J. Chung, Y.-C. Ghim, H. J. Woo, and Y. S. Hwang, “Development of a filtered AXUV diode array for X-pinch soft x-ray spectra in the energy range of 1–10 keV,” Rev. Sci. Instrum. 92(5), 053509 (2021).10.1063/5.0034638
    [15]
    J. Ryu, S. Ham, J. Lee, J. Park, S. Park, Y. Choi, H. J. Woo, K. Lee, Y.-C. Ghim, Y. S. Hwang, and K.-J. Chung, “A modular X-pinch device for versatile X-pinch experiments at Seoul National University,” Rev. Sci. Instrum. 92(5), 053533 (2021).10.1063/5.0041306
    [16]
    D. L. Fehl, W. A. Stygar, G. A. Chandler, M. E. Cuneo, and C. L. Ruiz, “X-ray flux from filtered arrays of detectors without unfolding,” Rev. Sci. Instrum. 76(10), 103504 (2005).10.1063/1.2090468
    [17]
    S. Tianming, Y. Jiamin, and Y. Rongqing, “Recover soft x-ray spectrum using virtual flat response channels with filtered x-ray diode array,” Rev. Sci. Instrum. 83(11), 113102 (2012).10.1063/1.4766960
    [18]
    S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, I. Y. Skobelev, A. S. Shlyaptseva, and S. B. Hansen, “X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited),” Rev. Sci. Instrum. 75(10), 3666 (2004).10.1063/1.1788863
    [19]
    D. B. Sinars, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, and J. P. Apruzese, “Time-resolved spectroscopy of Al, Ti, and Mo X pinch radiation using an X-ray streak camera,” J. Quant. Spectrosc. Radiat. Transfer 78(1), 61 (2003).10.1016/s0022-4073(02)00180-2
    [20]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. Elshafiey, and D. A. Hammer, “Time-resolved investigation of subnanosecond radiation from Al wire hybrid X pinches,” Phys. Rev. E 102(6), 063208 (2020).10.1103/PhysRevE.102.063208
    [21]
    T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, and D. A. Hammer, “Time-resolved spectroscopic measurements of ∼1 keV, dense, subnanosecond X-pinch plasma bright spots,” Phys. Plasmas 9(5), 2165 (2002).10.1063/1.1458587
    [22]
    S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, G. V. Ivanenkov, W. Stepniewski, and I. Y. Skobelev, “High energy density Z-pinch plasma conditions with picosecond time resolution,” Phys. Rev. Lett. 89(3), 035003 (2002).10.1103/PhysRevLett.89.035003
    [23]
    H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1(1), 3 (2005).10.1016/j.hedp.2005.07.001
    [24]
    M. S. Cho, J. H. Sohn, H.-K. Chung, B. I. Cho, and S. J. Hahn, “Analysis on the FLYCHK opacity of X-pinch wire materials,” J. Korean Phys. Soc. 78(11), 1072 (2021).10.1007/s40042-021-00173-4
    [25]
    A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer package for atomic processes in plasmas,” J. Quant. Spectrosc. Radiat. Transfer 71, 169 (2001).10.1016/s0022-4073(01)00066-8
    [26]
    [27]
    C. M. Huntington, C. C. Kuranz, G. Malamud, R. P. Drake, H.-S. Park, and B. R. Maddox, “Spectral analysis of x-ray emission created by intense laser irradiation of copper materials,” Rev. Sci. Instrum. 83(10), 10E114 (2012).10.1063/1.4732181
    [28]
    M. Šmíd, O. Renner, F. B. Rosmej, and D. Khaghani, “Investigation of x-ray emission induced by hot electrons in dense Cu plasmas,” Phys. Scr. 2014(T161), 014020.10.1088/0031-8949/2014/T161/014020
    [29]
    K. U. Akli, M. H. Key, H. K. Chung, S. B. Hansen, R. R. Freeman, M. H. Chen, G. Gregori, S. Hatchett, D. Hey, N. Izumi, J. King, J. Kuba, P. Norreys, A. J. Mackinnon, C. D. Murphy, R. Snavely, R. B. Stephens, C. Stoeckel, W. Theobald, and B. Zhang, “Temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal,” Phys. Plasmas 14(2), 023102 (2007).10.1063/1.2431632
    [30]
    R. K. Appartaim and B. T. Maakuu, “X-pinch x-ray sources driven by a 1 μs capacitor discharge,” Phys. Plasmas 15(7), 072703 (2008).10.1063/1.2953800
    [31]
    L. E. Aranchuk and J. Larour, “Absolute spectral radiation measurements from 200-ns 200-kA X-pinch in 10-eV–10-keV range with 1-ns resolution,” IEEE Trans. Plasma Sci. 37(4), 575 (2009).10.1109/tps.2009.2013229
    [32]
    R. Zhang, H. Luo, X. Zou, H. Shi, X. Zhu, S. Zhao, X. Wang, S. Yap, and C. S. Wong, “Energy spectrum measurement of X-ray radiation from a compact X-pinch device,” IEEE Trans. Plasma Sci. 42(10), 3143 (2014).10.1109/tps.2014.2312542
    [33]
    C. Pavez, A. Sepulveda, N. Cabrini, J. A. Pedreros, G. Avaria, P. I. S. Martin, and L. Soto, “Energetics X-ray burst observation in the collapse of an X-pinch conducted in a small capacitive generator of low impedance,” IEEE Trans. Plasma Sci. 46(11), 3829 (2018).10.1109/tps.2018.2876283
    [34]
    G. V. Ivanenkov, W. Stepniewski, and S. Y. Gus’kov, “MHD processes during the cascade development of the neck and hot spot in an X-pinch,” Plasma Phys. Rep. 34(8), 619 (2008).10.1134/s1063780x08080011
    [35]
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part II,” Plasma Phys. Rep. 41(6), 445 (2015).10.1134/s1063780x15060045
    [36]
    T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, S. N. Bland, D. Lall, N. Chaturvedi, and A. Georgakis, “X-pinch X-ray emission on a portable low-current, fast rise-time generator,” J. Appl. Phys. 124(8), 083303 (2018).10.1063/1.5032112
    [37]
    C. Christou, A. E. Dangor, and D. A. Hammer, “Characterization of wire x pinches driven by a microsecond-long capacitive discharge,” J. Appl. Phys. 87(12), 8295 (2000).10.1063/1.373541
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(1)

    Article Metrics

    Article views (39) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return