Citation: | Liu Wei, Jia Qing, Zheng Jian. Inverse Faraday effect of weakly relativistic full Poincaré beams in plasma[J]. Matter and Radiation at Extremes, 2023, 8(1): 014405. doi: 10.1063/5.0120072 |
[1] |
M. Tanimoto, S. Kato, E. Miura, N. Saito, K. Koyama, and J. K. Koga, “Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields,” Phys. Rev. E 68, 026401 (2003).10.1103/PhysRevE.68.026401
|
[2] |
X. H. Yuan, A. P. L. Robinson, M. N. Quinn, D. C. Carroll, M. Borghesi, R. J. Clarke, R. G. Evans, J. Fuchs, P. Gallegos, L. Lancia, D. Neely, K. Quinn, L. Romagnani, G. Sarri, P. A. Wilson, and P. McKenna, “Effect of self-generated magnetic fields on fast-electron beam divergence in solid targets,” New J. Phys. 12, 063018 (2010).10.1088/1367-2630/12/6/063018
|
[3] |
B. Liu, H. Y. Wang, J. Liu, L. B. Fu, Y. J. Xu, X. Q. Yan, and X. T. He, “Generating overcritical dense relativistic electron beams via self-matching resonance acceleration,” Phys. Rev. Lett. 110, 045002 (2013).10.1103/PhysRevLett.110.045002
|
[4] |
Z. Gong, F. Mackenroth, T. Wang, X. Q. Yan, T. Toncian, and A. V. Arefiev, “Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields,” Phys. Rev. E 102, 013206 (2020).10.1103/PhysRevE.102.013206
|
[5] |
D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/physrevlett.116.185003
|
[6] |
M. A. Yates, D. B. van Hulsteyn, H. Rutkowski, G. Kyrala, and J. U. Brackbill, “Experimental evidence for self-generated magnetic fields and remote energy deposition in laser-irradiated targets,” Phys. Rev. Lett. 49, 1702–1704 (1982).10.1103/physrevlett.49.1702
|
[7] |
M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
|
[8] |
R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, “Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition,” Nature 412, 798–802 (2001).10.1038/35090525
|
[9] |
H.-b. Cai, S. P. Zhu, M. Chen, S.-z. Wu, X. T. He, and K. Mima, “Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas,” Phys. Rev. E 83, 036408 (2011).10.1103/PhysRevE.83.036408
|
[10] |
W. A. Farmer, J. M. Koning, D. J. Strozzi, D. E. Hinkel, L. F. Berzak Hopkins, O. S. Jones, and M. D. Rosen, “Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment,” Phys. Plasmas 24, 052703 (2017).10.1063/1.4983140
|
[11] |
E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation,” Phys. Fluids 29, 1029–1041 (1986).10.1063/1.865901
|
[12] |
Q. Jia, K. Mima, H.-b. Cai, T. Taguchi, H. Nagatomo, and X. T. He, “Self-generated magnetic dipoles in weakly magnetized beam-plasma system,” Phys. Rev. E 91, 023107 (2015).10.1103/PhysRevE.91.023107
|
[13] |
J. M. Tian, H. B. Cai, W. S. Zhang, E. H. Zhang, B. Du, and S. P. Zhu, “Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target,” High Power Laser Sci. Eng. 8, E16 (2020).10.1017/hpl.2020.16
|
[14] |
H.-b. Cai, X.-x. Yan, P.-l. Yao, and S.-p. Zhu, “Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma,” Matter Radiat. Extremes 6, 035901 (2021).10.1063/5.0042973
|
[15] |
J. Deschamps, M. Fitaire, and M. Lagoutte, “Inverse Faraday effect in a plasma,” Phys. Rev. Lett. 25, 1330–1332 (1970).10.1103/physrevlett.25.1330
|
[16] |
A. D. Steiger and C. H. Woods, “Intensity-dependent propagation characteristics of circularly polarized high-power laser radiation in a dense electron plasma,” Phys. Rev. A 5, 1467–1474 (1972).10.1103/physreva.5.1467
|
[17] |
Z. M. Sheng and J. Meyer-ter-Vehn, “Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas,” Phys. Rev. E 54, 1833–1842 (1996).10.1103/physreve.54.1833
|
[18] |
V. I. Berezhiani, S. M. Mahajan, and N. L. Shatashvili, “Theory of magnetic field generation by relativistically strong laser radiation,” Phys. Rev. E 55, 995–1001 (1997).10.1103/physreve.55.995
|
[19] |
A. Kim, M. Tushentsov, D. Anderson, and M. Lisak, “Axial magnetic fields in relativistic self-focusing channels,” Phys. Rev. Lett. 89, 095003 (2002).10.1103/PhysRevLett.89.095003
|
[20] |
A. A. Frolov, “Excitation of magnetic fields by a circularly polarized laser pulse in a plasma channel,” Plasma Phys. Rep. 30, 698–709 (2004).10.1134/1.1788763
|
[21] |
N. Naseri, V. Y. Bychenkov, and W. Rozmus, “Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas,” Phys. Plasmas 17, 083109 (2010).10.1063/1.3471940
|
[22] |
S. Ali, J. R. Davies, and J. T. Mendonca, “Inverse Faraday effect with linearly polarized laser pulses,” Phys. Rev. Lett. 105, 035001 (2010).10.1103/PhysRevLett.105.035001
|
[23] |
M. G. Haines, “Generation of an axial magnetic field from photon spin,” Phys. Rev. Lett. 87, 135005 (2001).10.1103/physrevlett.87.135005
|
[24] |
Z. Najmudin, M. Tatarakis, A. Pukhov, E. L. Clark, R. J. Clarke, A. E. Dangor, J. Faure, V. Malka, D. Neely, M. I. K. Santala, and K. Krushelnick, “Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma,” Phys. Rev. Lett. 87, 215004 (2001).10.1103/physrevlett.87.215004
|
[25] |
I. Y. Kostyukov, G. Shvets, N. J. Fisch, and J. M. Rax, “Magnetic-field generation and electron acceleration in relativistic laser channel,” Phys. Plasmas 9, 636–648 (2002).10.1063/1.1430436
|
[26] |
G. Shvets, N. J. Fisch, and J. M. Rax, “Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles,” Phys. Rev. E 65, 046403 (2002).10.1103/PhysRevE.65.046403
|
[27] |
D. Wu and J. W. Wang, “Magetostatic amplifier with tunable maximum by twisted-light plasma interactions,” Plasma Phys. Controlled Fusion 59, 095010 (2017).10.1088/1361-6587/aa77c5
|
[28] |
Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen, and R. J. Kingham, “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Phys. Rev. Lett. 121, 145002 (2018).10.1103/physrevlett.121.145002
|
[29] |
R. Nuter, P. Korneev, I. Thiele, and V. Tikhonchuk, “Plasma solenoid driven by a laser beam carrying an orbital angular momentum,” Phys. Rev. E 98, 033211 (2018).10.1103/physreve.98.033211
|
[30] |
A. Longman and R. Fedosejevs, “Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams,” Phys. Rev. Res. 3, 043180 (2021).10.1103/physrevresearch.3.043180
|
[31] |
R. N. Sudan, “Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target,” Phys. Rev. Lett. 70, 3075–3078 (1993).10.1103/physrevlett.70.3075
|
[32] |
R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).10.1103/physrev.50.115
|
[33] |
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).10.1103/physreva.45.8185
|
[34] |
Y. Shi, B. Shen, L. Zhang, X. Zhang, W. Wang, and Z. Xu, “Light fan driven by a relativistic laser pulse,” Phys. Rev. Lett. 112, 235001 (2014).10.1103/PhysRevLett.112.235001
|
[35] |
J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).10.1038/ncomms10371
|
[36] |
A. Leblanc, A. Denoeud, L. Chopineau, G. Mennerat, P. Martin, and F. Quéré, “Plasma holograms for ultrahigh-intensity optics,” Nat. Phys. 13, 440–443 (2017).10.1038/nphys4007
|
[37] |
K. Qu, Q. Jia, and N. J. Fisch, “Plasma q-plate for generation and manipulation of intense optical vortices,” Phys. Rev. E 96, 053207 (2017).10.1103/PhysRevE.96.053207
|
[38] |
W. P. Wang, C. Jiang, H. Dong, X. M. Lu, J. F. Li, R. J. Xu, Y. J. Sun, L. H. Yu, Z. Guo, X. Y. Liang, Y. X. Leng, R. X. Li, and Z. Z. Xu, “Hollow plasma acceleration driven by a relativistic reflected hollow laser,” Phys. Rev. Lett. 125, 034801 (2020).10.1103/PhysRevLett.125.034801
|
[39] |
R. Nuter, P. Korneev, E. Dmitriev, I. Thiele, and V. T. Tikhonchuk, “Gain of electron orbital angular momentum in a direct laser acceleration process,” Phys. Rev. E 101, 053202 (2020).10.1103/PhysRevE.101.053202
|
[40] |
A. M. Beckley, T. G. Brown, and M. A. Alonso, “Full Poincaré beams,” Opt. Express 18, 10777–10785 (2010).10.1364/oe.18.010777
|
[41] |
L.-G. Wang, “Optical forces on submicron particles induced by full Poincaré beams,” Opt. Express 20, 20814–20826 (2012).10.1364/oe.20.020814
|
[42] |
W. Zhu, V. Shvedov, W. She, and W. Krolikowski, “Transverse spin angular momentum of tightly focused full Poincaré beams,” Opt. Express 23, 34029–34041 (2015).10.1364/oe.23.034029
|
[43] |
W. Lin, Y. Ota, Y. Arakawa, and S. Iwamoto, “Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers,” Phys. Rev. Res. 3, 023055 (2021).10.1103/physrevresearch.3.023055
|
[44] |
C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007).10.1038/nphys595
|
[45] |
S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, F. Réau, D. Garzella, P. D’Oliveira, P. Martin, and F. Quéré, “Optically controlled solid-density transient plasma gratings,” Phys. Rev. Lett. 112, 145008 (2014).10.1103/physrevlett.112.145008
|
[46] |
S. Weng, Q. Zhao, Z. Sheng, W. Yu, S. Luan, M. Chen, L. Yu, M. Murakami, W. B. Mori, and J. Zhang, “Extreme case of Faraday effect: Magnetic splitting of ultrashort laser pulses in plasmas,” Optica 4, 1086–1091 (2017).10.1364/optica.4.001086
|
[47] |
T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
|
[48] |
S.-p. Zhu, C. Y. Zheng, and X. T. He, “A theoretical model for a spontaneous magnetic field in intense laser plasma interaction,” Phys. Plasmas 10, 4166–4168 (2003).10.1063/1.1608936
|
[49] |
B. Qiao, S.-p. Zhu, C. Y. Zheng, and X. T. He, “Quasistatic magnetic and electric fields generated in intense laser plasma interaction,” Phys. Plasmas 12, 053104 (2005).10.1063/1.1889090
|
[50] |
B. Qiao, X. T. He, and S.-p. Zhu, “Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction,” Phys. Plasmas 13, 053106 (2006).10.1063/1.2200298
|