Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Xiao Cheng-Jian, Meng Guang-Wei, Zhao Ying-Kui. Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve[J]. Matter and Radiation at Extremes, 2023, 8(2): 026901. doi: 10.1063/5.0119240
Citation: Xiao Cheng-Jian, Meng Guang-Wei, Zhao Ying-Kui. Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve[J]. Matter and Radiation at Extremes, 2023, 8(2): 026901. doi: 10.1063/5.0119240

Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve

doi: 10.1063/5.0119240
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: meng_guangwei@iapm.ac.cn and zhao_yingkui@iapm.ac.cn
  • Received Date: 2022-08-08
  • Accepted Date: 2023-02-01
  • Available Online: 2023-03-01
  • Publish Date: 2023-03-01
  • A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Cheng-Jian Xiao: Investigation (equal); Methodology (equal). Guang-Wei Meng: Investigation (equal); Methodology (equal). Ying-Kui Zhao: Investigation (equal); Methodology (equal).
    Author Contributions
    The data and materials used in the study are available from the corresponding authors on reasonable request.
  • loading
  • [1]
    R. E. Marshak, “Effect of radiation on shock wave behavior,” Phys. Fluids 1, 24 (1958).10.1063/1.1724332
    [2]
    Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Academic, New York, 1984).
    [3]
    M. D. Rosen, “The science applications of the high-energy density plasmas created on the Nova laser,” Phys. Plasmas 3, 1803 (1996).10.1063/1.871683
    [4]
    B. A. Remington, D. Arnett, R. Paul, H. Drake, and H. Takabe, “Modeling astrophysical phenomena in the laboratory with intense lasers,” Science 284, 1488 (1999).10.1126/science.284.5419.1488
    [5]
    J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the national ignition facility,” Phys. Plasmas 11, 339 (2004).10.1063/1.1578638
    [6]
    T. Michel, B. Albertazzi, P. Mabey et al., “Laboratory observation of radiative shock deceleration and application to SN 1987A,” Astrophys. J. 888, 25 (2020).10.3847/1538-4357/ab5956
    [7]
    A. S. Moore, T. M. Guymer, J. Morton et al., “Characterization of supersonic radiation diffusion waves,” J. Quant. Spectrosc. Radiat. Transfer 159, 19 (2015).10.1016/j.jqsrt.2015.02.020
    [8]
    M. Koenig, T. Michel, R. Yurchak et al., “Interaction of a highly radiative shock with a solid obstacle,” Phys. Plasmas, 24, 082707 (2017).10.1063/1.4996010
    [9]
    V. Tranchant, N. Charpentier, L. Van Box Som, A. Ciardi, and É. Falize, “New class of laboratory astrophysics experiments: Application to radiative accretion processes around neutron stars,” Astrophys. J. 936, 14 (2022).10.3847/1538-4357/ac81b8
    [10]
    R. Pakula and R. Sigel, “Self-similar expansion of dense matter due to heat transfer by nonlinear conduction,” Phys. Fluids 28, 232 (1985).10.1063/1.865184
    [11]
    J. H. Hammer and M. D. Rosen, “A consistent approach to solving the radiation diffusion equation,” Phys. Plasmas 10, 1829 (2003).10.1063/1.1564599
    [12]
    N. Kaiser, J. Meyer-ter-Vehn, and R. Sigel, “The X-ray-driven heating wave,” Phys. Fluids B 1, 1747 (1989).10.1063/1.858902
    [13]
    M. D. Rosen and J. H. Hammer, “Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss,” Phys. Rev. E 72, 056403 (2005).10.1103/physreve.72.056403
    [14]
    O. A. Hurricane and J. H. Hammer, “Bent Marshak waves,” Phys. Plasmas 13, 113303 (2006).10.1063/1.2388268
    [15]
    J. Garnier, G. Malinié, Y. Saillard, and C. Cherfils-Cléerouin, “Self-similar solutions for a nonlinear radiation diffusion equation,” Phys. Plasmas 13, 092703 (2006).10.1063/1.2350167
    [16]
    Y. Saillard, P. Arnault, and V. Silvert, “Principles of the radiative ablation modeling,” Phys. Plasmas 17, 123302 (2010).10.1063/1.3530595
    [17]
    T. Shussman and S. I. Heizler, “Full self-similar solutions of the subsonic radiative heat equations,” Phys. Plasmas 22, 082109 (2015).10.1063/1.4927756
    [18]
    G. Meng, J. Li, J. Yang, T. Zhu, S. Zou, M. Wang, and W. Zhang, “A simple method to verify the opacity and equation of state of high-Z plasmas,” Phys. Plasmas 20, 092704 (2013).10.1063/1.4821836
    [19]
    G. Meng, J. Wang, X. Wang, J. Li, and W. Zhang, “Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas,” Matter Radiat. Extremes 1, 249 (2016).10.1016/j.mre.2016.09.001
    [20]
    G. Meng, S. Zou, and M. Wang, “The theoretical investigation of radiation transport in a slot,” Phys. Plasmas 26, 022708 (2019).10.1063/1.5064771
    [21]
    Z. Liu, G. Meng, and Y. Zhao, “A theoretical criterion for the closure of slots filled with low-Z foam,” Phys. Plasmas 27, 033303 (2020).10.1063/1.5129484
    [22]
    G. Meng, J. She, T. Song, J. Yang, and M. Wang, “Theoretical investigations on x-ray transport in radiation transport experiments on the Shenguang-III prototype laser facility,” Matter Radiat. Extremes 7, 025901 (2022).10.1063/5.0043745
    [23]
    T. Feng, “A numerical method for solving radiation transport equation on Lagrangian mesh,” Chin. J. Comput. Phys. 21, 427 (2004).
    [24]
    G. B. Zimmerman and W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Comments Plasma Phys. Controlled Fusion 2, 51 (1975).
    [25]
    M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, “Three-dimensional HYDRA simulations of national ignition facility targets,” Phys. Plasmas 8, 2275 (2001).10.1063/1.1356740
    [26]
    R. Ramis, J. Meyer-ter-Vehn, and J. Ramrez, “MULTI2D-a computer code for two-dimensional radiation hydrodynamics,” Comput. Phys. Comm. 180, 977 (2009).10.1016/j.cpc.2008.12.033
    [27]
    R. Ramis, K. Eidmann, J. Meyer-ter-Vehn, and S. Hüller, “MULTI-fs-A computer code for laser-plasma interaction in the femtosecond regime,” Comput. Phys. Comm. 183, 637 (2012).10.1016/j.cpc.2011.10.016
    [28]
    J. Shaoen, X. Yan, D. Yongkun, L. Dongxian, Z. Zhijian, H. Yixiang, L. Jinghong, S. Kexu, H. Xin, and Z. Wenhai, “Supersonic propagation of heat waves in low density heavy material,” Plasma Sci. Technology 7, 2965 (2005).10.1088/1009-0630/7/4/022
    [29]
    Y. Xu, S. Jiang, D. Lai, W. Pei, Y. Ding, T. Chang, K. Lan, S. Li, and T. Feng, “Two-photon group radiation transfer study in low-density foam cylinder,” Laser Part. Beams 24, 495 (2006).10.1017/s0263034606060654
    [30]
    Z. Ji-Yan, Y. Jia-Min, J. Shao-En, L. Yong-Sheng, Y. Guo-Hong, D. Yao-Nan, H. Yi-Xiang, and H. Xin, “Experimental observation of ionization and shock fronts in foam targets driven by thermal radiation,” Chin. Phys. B 19, 025201 (2010).10.1088/1674-1056/19/2/025201
    [31]
    J. Yang, G. Meng, T. Zhu, J. Zhang, J. Li, X. He, R. Yi, Y. Xu, Z. Hu, Y. Ding, S. Liu, and Y. Ding, “Experimental study of the hydrodynamic trajectory of an x-ray-heated gold plasmas,” Phys. Plasmas 17, 062702 (2010).10.1063/1.3443127
    [32]
    C. Li, C. Wu, T. Huang, Z. Dai, X. Li, F. Ge, W. Jiang, P. Yang, W. Zheng, and S. Zou, “Investigations on the hohlraum radiation in the first shaped laser pulse implosion experiment at the SGIII laser facility,” Phys. Plasmas 26, 022705 (2019).10.1063/1.5063364
    [33]
    D. Hoarty, A. Iwase, C. Meyer, J. Edwards, and O. Willi, “Characterization of laser driven shocks in low density foam targets,” Phys. Rev. Lett. 78, 3322 (1997).10.1103/physrevlett.78.3322
    [34]
    C. A. Back, J. D. Bauer, J. H. Hammer, B. F. Lasinski, R. E. Turner, P. W. Rambo, O. L. Landen, L. J. Suter, M. D. Rosen, and W. W. Hsing, “Diffusive, supersonic x-ray transport in radiatively heated foam cylinders,” Phys. Plasmas 7, 2126 (2000).10.1063/1.874057
    [35]
    C. A. Back, J. D. Bauer, O. L. Landen, R. E. Turner, B. F. Lasinski, J. H. Hammer, M. D. Rosen, L. J. Suter, and W. H. Hsing, “Detailed measurements of a diffusive supersonic wave in a radiatively heated foam,” Phys. Rev. Lett. 84, 274 (2000).10.1103/physrevlett.84.274
    [36]
    A. S. Moore, A. B. R. Cooper, M. B. Schneider, S. MacLaren, P. Graham, K. Lu, R. Seugling, J. Satcher, J. Klingmann, A. J. Comley, R. Marrs, M. May, K. Widmann, G. Glendinning, J. Castor, J. Sain, C. A. Back, J. Hund, K. Baker, W. W. Hsing, J. Foster, B. Young, and P. Young, “Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility,” Phys. Plasmas 21, 063303 (2014).10.1063/1.4880558
    [37]
    T. M. Guymer, A. S. Moore, J. Morton, J. L. Kline, S. Allan, N. Bazin, J. Benstead, C. Bentley, A. J. Comley, J. Cowan, K. Flippo, W. Garbett, C. Hamilton, N. E. Lanier, K. Mussack, K. Obrey, L. Reed, D. W. Schmidt, R. M. Stevenson, J. M. Taccetti, and J. Workman, “Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility,” Phys. Plasmas 22, 043303 (2015).10.1063/1.4919025
    [38]
    A. P. Cohen and S. I. Heizler, “Modeling of supersonic radiative Marshak waves using simple models and advanced simulations,” J. Comput. Theor. Transp. 47, 378 (2018).10.1080/23324309.2018.1489846
    [39]
    A. P. Cohen, G. Malamud, and S. I. Heizler, “Key to understanding supersonic radiative Marshak waves using simple models and advanced simulations,” Phys. Rev. Res. 2, 023007 (2020).10.1103/physrevresearch.2.023007
    [40]
    S. Tian-Ming and Y. Jia-Min, “One-dimensional simulation of radiation transport in three-dimensional cylinder,” Acta Phys. Sin. 62, 015210 (2013).10.7498/aps.62.015210
    [41]
    G. L. Olson, L. H. Auer, and M. L. Hall, “Diffusion, P1, and other approximate forms of radiation transport,” J. Quant. Spectrosc. Radiat. Transfer 64, 619 (2000).10.1016/s0022-4073(99)00150-8
    [42]
    M. Guang-Wei, L. Jing-Hong, P. Wen-Bing, L. Shuang-Gui, and Z. Wei-Yan, “Effect of temperature gradient on the non-equilibrium rate of flux emitted by plane gold wall,” Acta Phys. Sin. 60, 025210 (2011).10.7498/aps.60.025210
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (49) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return