Citation: | Li Xing, Zhang Xiaohua, Liu Yong, Yang Guochun. Bonding-unsaturation-dependent superconductivity in P-rich sulfides[J]. Matter and Radiation at Extremes, 2022, 7(4): 048402. doi: 10.1063/5.0098035 |
[1] |
W. Lu, S. Liu, G. Liu, K. Hao, M. Zhou, P. Gao, H. Wang, J. Lv, H. Gou, and G. Yang, “Disproportionation of SO2 at high pressure and temperature,” Phys. Rev. Lett. 128, 106001 (2022).10.1103/physrevlett.128.106001
|
[2] |
Y. Liu, R. Wang, Z. Wang, D. Li, and T. Cui, “Formation of twelve-fold iodine coordination at high pressure,” Nat. Commun. 13, 412 (2022).10.1038/s41467-022-28083-4
|
[3] |
Y. Chen, X. Feng, J. Chen, X. Cai, B. Sun, H. Wang, H. Du, S. A. T. Redfern, Y. Xie, and H. Liu, “Ultrahigh-pressure induced decomposition of silicon disulfide into silicon-sulfur compounds with high coordination numbers,” Phys. Rev. B 99, 184106 (2019).10.1103/physrevb.99.184106
|
[4] |
D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, “Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity,” Sci. Rep. 4, 6968 (2014).10.1038/srep06968
|
[5] |
A. R. Oganov, C. J. Pickard, Q. Zhu, and R. J. Needs, “Structure prediction drives materials discovery,” Nat. Rev. Mater. 4, 331–348 (2019).10.1038/s41578-019-0101-8
|
[6] |
C. J. Pickard, I. Errea, and M. I. Eremets, “Superconducting hydrides under pressure,” Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).10.1146/annurev-conmatphys-031218-013413
|
[7] |
L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
|
[8] |
D. V. Semenok, I. A. Troyan, A. G. Ivanova, A. G. Kvashnin, I. A. Kruglov, M. Hanfland, A. V. Sadakov, O. A. Sobolevskiy, K. S. Pervakov, and I. S. Lyubutin, “Superconductivity at 253 K in lanthanum-yttrium ternary hydrides,” Mater. Today 48, 18–28 (2021).10.1016/j.mattod.2021.03.025
|
[9] |
X. Zhang, Y. Zhao, and G. Yang, “Superconducting ternary hydrides under high pressure,” Wiley Interdiscip. Rev.: Comput. Mol. Sci 12, e1582 (2022).10.1002/wcms.1582
|
[10] |
K. Gao, W. Cui, J. Chen, Q. Wang, J. Hao, J. Shi, C. Liu, S. Botti, M. A. L. Marques, and Y. Li, “Superconducting hydrogen tubes in hafnium hydrides at high pressure,” Phys. Rev. B 104, 214511 (2021).10.1103/physrevb.104.214511
|
[11] |
H. Xie, Y. Yao, X. Feng, D. Duan, H. Song, Z. Zhang, S. Jiang, S. A. T. Redfern, V. Z. Kresin, C. J. Pickard, and T. Cui, “Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor,” Phys. Rev. Lett. 125, 217001 (2020).10.1103/physrevlett.125.217001
|
[12] |
H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, “Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure,” Proc. Natl. Acad. Sci. U. S. A. 114, 6990 (2017).10.1073/pnas.1704505114
|
[13] |
M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/PhysRevLett.122.027001
|
[14] |
H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, “Superconductive sodalite-like clathrate calcium hydride at high pressures,” Proc. Natl. Acad. Sci. U. S. A. 109, 6463 (2012).10.1073/pnas.1118168109
|
[15] |
H. M. James and A. S. Coolidge, “The ground state of the hydrogen molecule,” J. Chem. Phys. 1, 825–835 (1933).10.1063/1.1749252
|
[16] |
F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, and R. Weihrich, “The extended stability range of phosphorus allotropes,” Angew. Chem., Int. Ed. 53, 11629–11633 (2014).10.1002/anie.201404147
|
[17] |
T. Sugimoto, Y. Akahama, H. Fujihisa, Y. Ozawa, H. Fukui, N. Hirao, and Y. Ohishi, “Identification of superlattice structure cI16 in the P-VI phase of phosphorus at 340 GPa and room temperature via x-ray diffraction,” Phys. Rev. B 86, 024109 (2012).10.1103/physrevb.86.024109
|
[18] |
H. Luo, R. G. Greene, and A. L. Ruoff, “β-Po phase of sulfur at 162 GPa: X-Ray diffraction study to 212 GPa,” Phys. Rev. Lett. 71, 2943 (1993).10.1103/physrevlett.71.2943
|
[19] |
A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).10.1063/1.2210932
|
[20] |
T. Rödl, R. Weihrich, J. Wack, J. Senker, and A. Pfitzner, “Rational syntheses and structural characterization of sulfur‐rich phosphorus polysulfides: α‐P2S7 and β‐P2S7,” Angew. Chem., Int. Ed. 50, 10996–11000 (2011).10.1002/anie.201103485
|
[21] |
Y. C. Leung, J. Waser, S. v. Houten, A. Vos, G. A. Wiegers, and E. H. Wiebenga, “The crystal structure of P4S3,” Acta Crystallogr. 10, 574–582 (1957).10.1107/s0365110x57002042
|
[22] |
B. Wallis, G.-U. Wolf, and P. Leibnitz, “Über die struktur einer neuen modifikation des phosphorsulfids P4S9,” Z. Anorg. Allg. Chem. 588, 139–146 (1990).10.1002/zaac.19905880118
|
[23] |
A. Vos, R. Olthof, F. van Bolhuis, and R. Botterweg, “Refinement of the crystal structures of some phosphorus sulphides,” Acta Crystallogr. 19, 864–867 (1965).10.1107/s0365110x65004516
|
[24] |
S. Van Houten and E. H. Wiebenga, “The crystal structure of P4S5,” Acta Crystallogr. 10, 156–160 (1957).10.1107/s0365110x57000523
|
[25] |
D. Wei, J. Yin, Z. Ju, S. Zeng, H. Li, W. Zhao, Y. Wei, and H. Li, “Cage-like P4S3 molecule as promising anode with high capacity and cycling stability for Li+/Na+/K+ storage,” J. Energy Chem. 50, 187–194 (2020).10.1016/j.jechem.2020.03.021
|
[26] |
M. Li, X. Liu, Q. Li, Z. Jin, W. Wang, A. Wang, Y. Huang, and Y. Yang, “P4S10 modified lithium anode for enhanced performance of lithium-sulfur batteries,” J. Energy Chem. 41, 27–33 (2020).10.1016/j.jechem.2019.03.038
|
[27] |
H. Katzke and P. Tolédano, “Displacive mechanisms and order-parameter symmetries for the A7-incommensurate-bcc sequences of high-pressure reconstructive phase transitions in Group Va elements,” Phys. Rev. B 77, 024109 (2008).10.1103/physrevb.77.024109
|
[28] |
A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, “Decomposition products of phosphine under pressure: PH2 stable and superconducting?,” J. Am. Chem. Soc. 138, 1884–1892 (2016).10.1021/jacs.5b10180
|
[29] |
J. A. Flores-Livas, M. Amsler, C. Heil, A. Sanna, L. Boeri, G. Profeta, C. Wolverton, S. Goedecker, and E. Gross, “Superconductivity in metastable phases of phosphorus–hydride compounds under high pressure,” Phys. Rev. B 93, 020508 (2016).10.1103/physrevb.93.020508
|
[30] |
H. Liu, Y. Li, G. Gao, J. S. Tse, and I. I. Naumov, “Crystal structure and superconductivity of PH3 at high pressures,” J. Phys. Chem. C 120, 3458–3461 (2016).10.1021/acs.jpcc.5b12009
|
[31] |
Y. Yuan, Y. Li, G. Fang, G. Liu, C. Pei, X. Li, H. Zheng, K. Yang, and L. Wang, “Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc superconducting hydrides,” Natl. Sci. Rev. 6, 524–531 (2019).10.1093/nsr/nwz010
|
[32] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 K at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964
|
[33] |
Y. Ge, F. Zhang, R. P. Dias, R. J. Hemley, and Y. Yao, “Hole-doped room-temperature superconductivity in H3S1−xZx (Z = C, Si),” Mater. Today Phys. 15, 100330 (2020).10.1016/j.mtphys.2020.100330
|
[34] |
Y. Ge, F. Zhang, and Y. Yao, “First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution,” Phys. Rev. B 93, 224513 (2016).10.1103/physrevb.93.224513
|
[35] |
F. Fan, D. A. Papaconstantopoulos, M. J. Mehl, and B. M. Klein, “High-temperature superconductivity at high pressures for H3SixP1−x, H3PxS1−x, and H3ClxS1−x,” J. Phys. Chem. Solids 99, 105–110 (2016).10.1016/j.jpcs.2016.08.007
|
[36] |
M. Amsler, “Thermodynamics and superconductivity of SxSe1−xH3,” Phys. Rev. B 99, 060102 (2019).10.1103/physrevb.99.060102
|
[37] |
N. Geng, T. Bi, and E. Zurek, “Structural diversity and superconductivity in S–P–H ternary hydrides underpressure,” J. Phys. Chem. C 126, 7208 (2022).10.1021/acs.jpcc.1c10976
|
[38] |
Y. Sun, Y. Tian, B. Jiang, X. Li, H. Li, T. Iitaka, X. Zhong, and Y. Xie, “Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation,” Phys. Rev. B 101, 174102 (2020).10.1103/physrevb.101.174102
|
[39] |
Z. Shao, D. Duan, Y. Ma, H. Yu, H. Song, H. Xie, D. Li, F. Tian, B. Liu, and T. Cui, “Ternary superconducting cophosphorus hydrides stabilized via lithium,” npj Comput. Mater. 5, 104 (2019).10.1038/s41524-019-0244-6
|
[40] |
X. Li, Y. Xie, Y. Sun, P. Huang, H. Liu, C. Chen, and Y. Ma, “Chemically tuning stability and superconductivity of P–H compounds,” J. Phys. Chem. Lett. 11, 935–939 (2020).10.1021/acs.jpclett.9b03856
|
[41] |
X. Li, X. Zhang, A. Bergara, G. Gao, Y. Liu, and G. Yang, “Superconducting LaP2H2 with graphene like phosphorus layers,” Phys. Rev. B 105, 024504 (2022).10.1103/physrevb.105.024504
|
[42] |
Y.-L. Li, E. Stavrou, Q. Zhu, S. M. Clarke, Y. Li, and H.-M. Huang, “Superconductivity in the van der Waals layered compound PS2,” Phys. Rev. B 99, 220503 (2019).10.1103/physrevb.99.220503
|
[43] |
Y. Liu, C. Wang, X. Chen, P. Lv, H. Sun, and D. Duan, “Pressure-induced structures and properties in P–S compounds,” Solid State Commun. 293, 6–10 (2019).10.1016/j.ssc.2019.01.024
|
[44] |
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B 46, 6671–6687 (1992).10.1103/physrevb.46.6671
|
[45] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
|
[46] |
P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
|
[47] |
A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic and molecular systems,” J. Chem. Phys. 92, 5397–5403 (1990).10.1063/1.458517
|
[48] |
R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, “LOBSTER: Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory,” J. Comput. Chem. 41, 1931–1940 (2020).10.1002/jcc.26353
|
[49] |
A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B 78, 134106 (2008).10.1103/physrevb.78.134106
|
[50] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
|
[51] |
O. Degtyareva, E. Gregoryanz, M. Somayazulu, P. Dera, H.-K. Mao, and R. J. Hemley, “Novel chain structures in group VI elements,” Nat. Mater. 4, 152–155 (2005).10.1038/nmat1294
|
[52] |
J. R. Van Wazer, “Principles of phosphorus chemistry. I. Some generalities concerning multiple bonding,” J. Am. Chem. Soc. 78, 5709–5715 (1956).10.1021/ja01603a001
|
[53] |
T. K. Chattopadhyay, W. May, H. G. von Schnering, and G. S. Pawley, “X-ray and neutron diffraction study of the crystal structure of α-P4S3,” Z. Kristallogr. - Cryst. Mater. 165, 47–64 (1983).10.1524/zkri.1983.165.1-4.47
|
[54] |
P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905–922 (1975).10.1103/physrevb.12.905
|
[55] |
P. B. Allen and B. Mitrović, “Theory of superconducting Tc,” Solid State Phys. 37, 1–92 (1983).10.1016/s0081-1947(08)60665-7
|
[56] |
J. P. Carbotte, “Properties of boson-exchange superconductors,” Rev. Mod. Phys. 62, 1027 (1990).10.1103/revmodphys.62.1027
|
[57] |
F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119, 107001 (2017).10.1103/physrevlett.119.107001
|
[58] |
D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, “Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties,” Mater. Today 33, 36–44 (2020).10.1016/j.mattod.2019.10.005
|
[59] |
D. Zhou, D. V. Semenok, D. Duan, H. Xie, W. Chen, X. Huang, X. Li, B. Liu, A. R. Oganov, and T. Cui, “Superconducting praseodymium superhydrides,” Sci. Adv. 6, eaax6849 (2020).10.1126/sciadv.aax6849
|
[60] |
A. Nakanishi, T. Ishikawa, and K. Shimizu, “First-principles study on superconductivity of P- and Cl-doped H3S,” J. Phys. Soc. Jpn. 87, 124711 (2018).10.7566/jpsj.87.124711
|
[61] |
T. Wang, M. Hirayama, T. Nomoto, T. Koretsune, R. Arita, and J. A. Flores-Livas, “Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S,” Phys. Rev. B 104, 064510 (2021).10.1103/physrevb.104.064510
|
[62] |
Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, and Y. Huang, “Dissociation products and structures of solid H2S at strong compression,” Phys. Rev. B 93, 020103 (2016).10.1103/physrevb.93.020103
|
[63] |
P. Morel and P. W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,” Phys. Rev. 125, 1263–1271 (1962).10.1103/physrev.125.1263
|
[64] |
A. Sanna, J. A. Flores-Livas, A. Davydov, G. Profeta, K. Dewhurst, S. Sharma, and E. K. U. Gross, “Ab initio Eliashberg theory: Making genuine predictions of superconducting features,” J. Phys. Soc. Jpn. 87, 041012 (2018).10.7566/jpsj.87.041012
|
![]() |
![]() |