Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Yuan Jianan, Xia Kang, Ding Chi, Wang Xiaomeng, Lu Qing, Sun Jian. High-energy-density metal nitrides with armchair chains[J]. Matter and Radiation at Extremes, 2022, 7(3): 038402. doi: 10.1063/5.0087168
Citation: Yuan Jianan, Xia Kang, Ding Chi, Wang Xiaomeng, Lu Qing, Sun Jian. High-energy-density metal nitrides with armchair chains[J]. Matter and Radiation at Extremes, 2022, 7(3): 038402. doi: 10.1063/5.0087168

High-energy-density metal nitrides with armchair chains

doi: 10.1063/5.0087168
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jiansun@nju.edu.cn
  • Received Date: 2022-02-02
  • Accepted Date: 2022-03-14
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • Polymeric nitrogen has attracted much attention owing to its possible application as an environmentally safe high-energy-density material. Based on a crystal structure search method accelerated by the use of machine learning and graph theory and on first-principles calculations, we predict a series of metal nitrides with chain-like polynitrogen (P21-AlN6, P21-GaN6, P-1-YN6, and P4/mnc-TiN8), all of which are estimated to be energetically stable below 40.8 GPa. Phonon calculations and ab initio molecular dynamics simulations at finite temperature suggest that these nitrides are dynamically stable. We find that the nitrogen in these metal nitrides can polymerize into two types of poly-N42 chains, in which the π electrons are either extended or localized. Owing to the presence of the polymerized N4 chains, these metal nitrides can store a large amount of chemical energy, which is estimated to range from 4.50 to 2.71 kJ/g. Moreover, these compounds have high detonation pressures and detonation velocities, exceeding those of conventional explosives such as TNT and HMX.
  • loading
  • [1]
    D. P. Stevenson, “The strengths of chemical bonds,” J. Am. Chem. Soc. 77, 2350 (1955).10.1021/ja01613a116
    [2]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
    [3]
    B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, “High-pressure synthesis of a pentazolate salt,” Chem. Mater. 29, 735–741 (2017).10.1021/acs.chemmater.6b04538
    [4]
    M. Miao, Y. Sun, E. Zurek, and H. Lin, “Chemistry under high pressure,” Nat. Rev. Chem. 4, 508–527 (2020).10.1038/s41570-020-0213-0
    [5]
    C. Mailhiot, L. H. Yang, and A. K. McMahan, “Polymeric nitrogen,” Phys. Rev. B 46, 14419–14435 (1992).10.1103/physrevb.46.14419
    [6]
    A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy, and K. O. Christe, “Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+,” J. Am. Chem. Soc. 123, 6308–6313 (2001).10.1021/ja010141g
    [7]
    D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, “High-pressure synthesized lithium pentazolate compound metastable under ambient conditions,” J. Phys. Chem. Lett. 9, 1600–1604 (2018).10.1021/acs.jpclett.8b00540
    [8]
    Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern, W. Lei, D. Liu, and Y. Ma, “Route to high-energy density polymeric nitrogen t-N via He–N compounds,” Nat. Commun. 9, 722 (2018).10.1038/s41467-018-03200-4
    [9]
    N. P. Salke, K. Xia, S. Fu, Y. Zhang, E. Greenberg, V. B. Prakapenka, J. Liu, J. Sun, and J. F. Lin, “Tungsten hexanitride with single-bonded armchairlike hexazine structure at high pressure,” Phys. Rev. Lett. 126, 065702 (2021).10.1103/PhysRevLett.126.065702
    [10]
    D. Tomasino, M. Kim, J. Smith, and C.-S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/physrevlett.113.205502
    [11]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/PhysRevLett.122.066001
    [12]
    D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, “High-pressure polymeric nitrogen allotrope with the black phosphorus structure,” Phys. Rev. Lett. 124, 216001 (2020).10.1103/physrevlett.124.216001
    [13]
    C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou, Y. Yao, B. Li, Y. Meng, J. S. Smith, V. B. Prakapenka, W. Liu, G. Shen, W. L. Mao, and H. K. Mao, “Nitrogen in black phosphorus structure,” Sci. Adv. 6, eaba9206 (2020).10.1126/sciadv.aba9206
    [14]
    F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
    [15]
    S. Zhu, F. Peng, H. Liu, A. Majumdar, T. Gao, and Y. Yao, “Stable calcium nitrides at ambient and high pressures,” Inorg. Chem. 55, 7550–7555 (2016).10.1021/acs.inorgchem.6b00948
    [16]
    B. A. Steele and I. I. Oleynik, “Sodium pentazolate: A nitrogen rich high energy density material,” Chem. Phys. Lett. 643, 21–26 (2016).10.1016/j.cplett.2015.11.008
    [17]
    C. Zhang, C. Sun, B. Hu, C. Yu, and M. Lu, “Synthesis and characterization of the pentazolate anion cyclo-N5− in (N5)6(H3O)3(NH4)4Cl,” Science 355, 374–376 (2017).10.1126/science.aah3840
    [18]
    Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang, and M. Lu, “A series of energetic metal pentazolate hydrates,” Nature 549, 78–81 (2017).10.1038/nature23662
    [19]
    P. Hou, L. Lian, Y. Cai, B. Liu, B. Wang, S. Wei, and D. Li, “Structural phase transition and bonding properties of high-pressure polymeric CaN3,” RSC Adv. 8, 4314–4320 (2018).10.1039/c7ra11260b
    [20]
    B. Huang and G. Frapper, “Barium–nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds,” Chem. Mater. 30, 7623–7636 (2018).10.1021/acs.chemmater.8b02907
    [21]
    Z. Liu, D. Li, Y. Liu, T. Cui, F. Tian, and D. Duan, “Metallic and anti-metallic properties of strongly covalently bonded energetic AlN5 nitrides,” Phys. Chem. Chem. Phys. 21, 12029–12035 (2019).10.1039/c9cp01723b
    [22]
    K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao, Q. Wu, and J. Sun, “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205–10211 (2019).10.1021/acs.jpcc.8b12527
    [23]
    K. Xia, J. Yuan, X. Zheng, C. Liu, H. Gao, Q. Wu, and J. Sun, “Predictions on high-power trivalent metal pentazolate salts,” J. Phys. Chem. Lett. 10, 6166–6173 (2019).10.1021/acs.jpclett.9b02383
    [24]
    D. Zhang, X. Xu, M. Lu, T. Bi, Y. Tian, S. Zhang, Y. Yan, Y. Du, M. Zhang, and L. Gao, “Predicted crystal structures of titanium nitrides at high pressures,” Comput. Mater. Sci. 180, 109720 (2020).10.1016/j.commatsci.2020.109720
    [25]
    X. Shi, Z. Yao, and B. Liu, “New high pressure phases of the Zn–N system,” J. Phys. Chem. C 124, 4044–4049 (2020).10.1021/acs.jpcc.0c00513
    [26]
    B. Wang, R. Larhlimi, H. Valencia, F. Guégan, and G. Frapper, “Prediction of novel tin nitride SnxNy phases under pressure,” J. Phys. Chem. C 124, 8080–8093 (2020).10.1021/acs.jpcc.9b11404
    [27]
    J. Zhang, C. Niu, H. Zhang, J. Zhao, X. Wang, and Z. Zeng, “Polymerization of nitrogen in nitrogen–fluorine compounds under pressure,” J. Phys. Chem. Lett. 12, 5731–5737 (2021).10.1021/acs.jpclett.1c01181
    [28]
    J. Yuan, K. Xia, J. Wu, and J. Sun, “High-energy-density pentazolate salts: CaN10 and BaN10,” Sci. China: Phys., Mech. Astron. 64, 218211 (2021).10.1007/s11433-020-1595-2
    [29]
    S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, “Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium–mitrogen MgxNy under high pressure,” J. Phys. Chem. C 121, 11037–11046 (2017).10.1021/acs.jpcc.7b00474
    [30]
    S. Zhang, Z. Zhao, L. Liu, and G. Yang, “Pressure-induced stable BeN4 as a high-energy density material,” J. Power Sources 365, 155–161 (2017).10.1016/j.jpowsour.2017.08.086
    [31]
    L. Wu, R. Tian, B. Wan, H. Liu, N. Gong, P. Chen, T. Shen, Y. Yao, H. Gou, and F. Gao, “Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species,” Chem. Mater. 30, 8476–8485 (2018).10.1021/acs.chemmater.8b02972
    [32]
    X.-H. Shi, B. Liu, Z. Yao, and B.-B. Liu, “Pressure-stabilized new phase of CaN4,” Chin. Phys. Lett. 37, 047101 (2020).10.1088/0256-307x/37/4/047101
    [33]
    S. Niu, Z. Li, H. Li, X. Shi, Z. Yao, and B. Liu, “New cadmium–nitrogen compounds at high pressures,” Inorg. Chem. 60, 6772–6781 (2021).10.1021/acs.inorgchem.1c00601
    [34]
    M. Bykov, E. Bykova, G. Aprilis, K. Glazyrin, E. Koemets, I. Chuvashova, I. Kupenko, C. McCammon, M. Mezouar, V. Prakapenka, H. P. Liermann, F. Tasnádi, A. V. Ponomareva, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky, “Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains,” Nat. Commun. 9, 2756 (2018).10.1038/s41467-018-05143-2
    [35]
    D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, and N. Dubrovinskaia, “Synthesis of magnesium-nitrogen salts of polynitrogen anions,” Nat. Commun. 10, 4515 (2019).10.1038/s41467-019-12530-w
    [36]
    M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnádi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, and I. A. Abrikosov, “High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
    [37]
    M. Bykov, E. Bykova, A. V. Ponomareva, I. A. Abrikosov, S. Chariton, V. B. Prakapenka, M. F. Mahmood, L. Dubrovinsky, and A. F. Goncharov, “Stabilization of polynitrogen anions in tantalum–nitrogen compounds at high pressure,” Angew. Chem., Int. Ed. 60, 9003–9008 (2021).10.1002/anie.202100283
    [38]
    M. Bykov, E. Bykova, E. Koemets, T. Fedotenko, G. Aprilis, K. Glazyrin, H.-P. Liermann, A. V. Ponomareva, J. Tidholm, F. Tasnádi, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky, “High-pressure synthesis of a nitrogen-rich inclusion compound ReN8·xN2 with conjugated polymeric nitrogen chains,” Angew. Chem., Int. Ed. 57, 9048–9053 (2018).10.1002/anie.201805152
    [39]
    M. Bykov, S. Chariton, E. Bykova, S. Khandarkhaeva, T. Fedotenko, A. V. Ponomareva, J. Tidholm, F. Tasnádi, I. A. Abrikosov, P. Sedmak, V. Prakapenka, M. Hanfland, H. P. Liermann, M. Mahmood, A. F. Goncharov, N. Dubrovinskaia, and L. Dubrovinsky, “High-pressure synthesis of metal–inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers,” Angew. Chem., Int. Ed. 59, 10321–10326 (2020).10.1002/anie.202002487
    [40]
    K. Xia, H. Gao, C. Liu, J. Yuan, J. Sun, H.-T. Wang, and D. Xing, “A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search,” Sci. Bull. 63, 817–824 (2018).10.1016/j.scib.2018.05.027
    [41]
    H. Gao, J. Wang, Y. Han, and J. Sun, “Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory,” Fundam. Res. 1, 466–471 (2021).10.1016/j.fmre.2021.06.005
    [42]
    H. Gao, J. Wang, Z. Guo, and J. Sun, “Determining dimensionalities and multiplicities of crystal nets,” npj Comput. Mater. 6, 143 (2020).10.1038/s41524-020-00409-0
    [43]
    C. Liu, H. Gao, Y. Wang, R. J. Needs, C. J. Pickard, J. Sun, H.-T. Wang, and D. Xing, “Multiple superionic states in helium–water compounds,” Nat. Phys. 15, 1065–1070 (2019).10.1038/s41567-019-0568-7
    [44]
    Q. Gu, D. Xing, and J. Sun, “Superconducting single-layer T-graphene and novel synthesis routes,” Chin. Phys. Lett. 36, 097401 (2019).10.1088/0256-307x/36/9/097401
    [45]
    C. Liu, H. Gao, A. Hermann, Y. Wang, M. Miao, C. J. Pickard, R. J. Needs, H.-T. Wang, D. Xing, and J. Sun, “Plastic and superionic helium ammonia compounds under high pressure and high temperature,” Phys. Rev. X 10, 021007 (2020).10.1103/physrevx.10.021007
    [46]
    H. Gao, C. Liu, A. Hermann, R. J. Needs, C. J. Pickard, H.-T. Wang, D. Xing, and J. Sun, “Coexistence of plastic and partially diffusive phases in a helium-methane compound,” Natl. Sci. Rev. 7, 1540–1547 (2020).10.1093/nsr/nwaa064
    [47]
    C. Liu, J. Shi, H. Gao, J. Wang, Y. Han, X. Lu, H. T. Wang, D. Xing, and J. Sun, “Mixed coordination silica at megabar pressure,” Phys. Rev. Lett. 126, 035701 (2021).10.1103/PhysRevLett.126.035701
    [48]
    C. Ding, J. Wang, Y. Han, J. Yuan, H. Gao, and J. Sun, “High energy density polymeric nitrogen nanotubes inside carbon nanotubes,” Chin. Phys. Lett. 39, 036101 (2022).10.1088/0256-307x/39/3/036101
    [49]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/physrevb.54.11169
    [50]
    P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953–17979 (1994).10.1103/physrevb.50.17953
    [51]
    J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100, 136406 (2008).10.1103/physrevlett.100.136406
    [52]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
    [53]
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” J. Chem. Phys. 132, 154104 (2010).10.1063/1.3382344
    [54]
    S. Grimme, S. Ehrlich, and L. Goerigk, “Effect of the damping function in dispersion corrected density functional theory,” J. Comput. Chem. 32, 1456–1465 (2011).10.1002/jcc.21759
    [55]
    A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater. 108, 1–5 (2015).10.1016/j.scriptamat.2015.07.021
    [56]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids,” J. Comput. Chem. 34, 2557–2567 (2013).10.1002/jcc.23424
    [57]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
    [58]
    A. Otero-de-la-Roza, M. A. Blanco, A. M. Pendás, and V. Luaña, “Critic: A new program for the topological analysis of solid-state electron densities,” Comput. Phys. Commun. 180, 157–166 (2009).10.1016/j.cpc.2008.07.018
    [59]
    A. Otero-de-la-Roza, E. R. Johnson, and V. Luaña, “Critic2: A program for real-space analysis of quantum chemical interactions in solids,” Comput. Phys. Commun. 185, 1007–1018 (2014).10.1016/j.cpc.2013.10.026
    [60]
    K. Momma and F. Izumi, “VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 1272–1276 (2011).10.1107/s0021889811038970
    [61]
    Y. Jean, F. Volatron, and J. K. Burdett, An Introduction to Molecular Orbitals (Oxford University Press, New York, 1993).
    [62]
    S. Limpijumnong and W. R. L. Lambrecht, “Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN,” Phys. Rev. Lett. 86, 91–94 (2001).10.1103/physrevlett.86.91
    [63]
    S. Zerroug, F. Ali Sahraoui, and N. Bouarissa, “Ab initio calculations of yttrium nitride: Structural and electronic properties,” Appl. Phys. A 97, 345–350 (2009).10.1007/s00339-009-5243-x
    [64]
    Z. Liu, D. Li, S. Wei, W. Wang, F. Tian, K. Bao, D. Duan, H. Yu, B. Liu, and T. Cui, “Bonding properties of aluminum nitride at high pressure,” Inorg. Chem. 56, 7494–7500 (2017).10.1021/acs.inorgchem.7b00980
    [65]
    C. J. Pickard and R. J. Needs, “High-pressure phases of nitrogen,” Phys. Rev. Lett. 102, 125702 (2009).10.1103/physrevlett.102.125702
    [66]
    R. Y. Rohling, I. C. Tranca, E. J. M. Hensen, and E. A. Pidko, “Correlations between density-based bond orders and orbital-based bond energies for chemical bonding analysis,” J. Phys. Chem. C 123, 2843–2854 (2019).10.1021/acs.jpcc.8b08934
    [67]
    E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, “Revealing noncovalent interactions,” J. Am. Chem. Soc. 132, 6498–6506 (2010).10.1021/ja100936w
    [68]
    W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graphics 14, 33–38 (1996).10.1016/0263-7855(96)00018-5
    [69]
    M. J. Kamlet and S. J. Jacobs, “Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives,” J. Chem. Phys. 48, 23–35 (1968).10.1063/1.1667908
    [70]
    J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103 (2017).10.1103/physrevb.95.020103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (476) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return