Citation: | Qin T.-T., Luo W., Lan H.-Y., Wang W.-M.. Ultrafast probing of plasma ion temperature in proton–boron fusion by nuclear resonance fluorescence emission spectroscopy[J]. Matter and Radiation at Extremes, 2022, 7(3): 035901. doi: 10.1063/5.0078961 |
[1] |
J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
|
[2] |
J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
|
[3] |
J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
|
[4] |
S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publication, 2004).
|
[5] |
D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).10.1016/0030-4018(85)90151-8
|
[6] |
D. Pesme and C. Labaune, in La Fusion Thermonucleaire Inertielle par Laser, edited by R. Dautray and J. P. Watteau (Eyrolles, 1993), Vol. 1.
|
[7] |
A. P. Fews, P. A. Norreys, F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, P. Lee, and S. J. Rose, “Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets,” Phys. Rev. Lett. 73, 1801–1804 (1994).10.1103/physrevlett.73.1801
|
[8] |
A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov, “Forward ion acceleration in thin films driven by a high-intensity laser,” Phys. Rev. Lett. 84, 4108–4111 (2000).10.1103/physrevlett.84.4108
|
[9] |
R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945–2948 (2000).10.1103/physrevlett.85.2945
|
[10] |
J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
|
[11] |
V. T. Voronchev and V. I. Kukulin, “Nuclear-physics aspects of controlled thermonuclear fusion: Analysis of promising fuels and gamma-ray diagnostics of hot plasma,” Phys. At. Nucl. 63, 2051–2066 (2000).10.1134/1.1333874
|
[12] |
W. M. Nevins, “A review of confinement requirements for advanced fuels,” J. Fusion Energy 17, 25–32 (1998).10.1023/a:1022513215080
|
[13] |
D. Giulietti, P. Andreoli, D. Batani et al., “Laser-plasma energetic particle production for aneutronic nuclear fusion experiments,” Nucl. Instrum. Methods Phys. Res., Sect. B 402, 373–375 (2017).10.1016/j.nimb.2017.03.076
|
[14] |
C. Baccou, S. Depierreux, V. Yahia et al., “New scheme to produce aneutronic fusion reactions by laser-accelerated ions,” Laser Part. Beams 33, 117–122 (2015).10.1017/s0263034615000178
|
[15] |
B. Nayak, “Reactivities of neutronic and aneutronic fusion fuels,” Ann. Nucl. Energy 60, 73–77 (2013).10.1016/j.anucene.2013.04.025
|
[16] |
J. Gruenwald, “Proposal for a novel type of small scale aneutronic fusion reactor,” Plasma Phys. Controlled Fusion 59, 025011 (2016).10.1088/1361-6587/59/2/025011
|
[17] |
H. W. Becker, C. Rolfs, and H. P. Trautvetter, “Low-energy cross sections for 11B(p,3α),” Z. Phys. A: At. Nucl. 327, 341–355 (1987).10.1007/bf01284459
|
[18] |
R. C. Kirkpatrick and J. A. Wheeler, “The physics of DT ignition in small fusion targets,” Nucl. Fusion 21, 389–401 (1981).10.1088/0029-5515/21/3/008
|
[19] |
N. Rostoker, M. W. Binderbauer, and H. J. Monkhorst, “Colliding beam fusion reactor,” Science 278, 1419–1422 (1997).10.1126/science.278.5342.1419
|
[20] |
H. Hora, G. H. Miley, S. Eliezer, and N. Nissim, “Pressure of picosecond CPA laser pulses substitute ultrahigh thermal pressures to ignite fusion,” High Energy Density Phys. 35, 100739 (2020).10.1016/j.hedp.2019.100739
|
[21] |
D. T. Casey, D. B. Sayre, C. R. Brune, V. A. Smalyuk, C. R. Weber, R. E. Tipton, J. E. Pino, G. P. Grim, B. A. Remington, D. Dearborn, L. R. Benedetti, J. A. Frenje, M. Gatu-Johnson, R. Hatarik, N. Izumi, J. M. McNaney, T. Ma, G. A. Kyrala, S. MacLaren, J. Salmonson, S. F. Khan, A. Pak, L. B. Hopkins, S. LePape, B. K. Spears, N. B. Meezan, L. Divol, C. B. Yeamans, J. A. Caggiano, D. P. McNabb, D. M. Holunga, M. Chiarappa-Zucca, T. R. Kohut, and T. G. Parham, “Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion,” Nat. Phys. 13, 1227–1231 (2017).10.1038/nphys4220
|
[22] |
V. Y. Glebov, T. C. Sangster, C. Stoeckl, J. P. Knauer, W. Theobald, K. L. Marshall, M. J. Shoup, T. Buczek, M. Cruz, T. Duffy, M. Romanofsky, M. Fox, A. Pruyne, M. J. Moran, R. A. Lerche, J. McNaney, J. D. Kilkenny, M. J. Eckart, D. Schneider, D. Munro, W. Stoeffl, R. Zacharias, J. J. Haslam, T. Clancy, M. Yeoman, D. Warwas, C. J. Horsfield, J.-L. Bourgade, O. Landoas, L. Disdier, G. A. Chandler, and R. J. Leeper, “The National Ignition Facility neutron time-of-flight system and its initial performance (invited),” Rev. Sci. Instrum. 81, 10D325 (2010).10.1063/1.3492351
|
[23] |
C. T. Angell, “Enabling in situ thermometry using transmission nuclear resonance fluorescence,” Nucl. Instrum. Methods Phys. Res., Sect. B 368, 9–14 (2016).10.1016/j.nimb.2015.11.026
|
[24] |
Y. Yu and B. Shen, “Ultrafast measurements of ion temperature in high-energy-density plasmas by nuclear resonance fluorescence,” Phys. Plasmas 26, 062708 (2019).10.1063/1.5097641
|
[25] |
H. Hora, G. Korn, S. Eliezer, N. Nissim, P. Lalousis, L. Giuffrida, D. Margarone, A. Picciotto, G. H. Miley, S. Moustaizis, J.-M. Martinez-Val, C. P. J. Barty, and G. J. Kirchhoff, “Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor,” High Power Laser Sci. Eng. 4, e35 (2016).10.1017/hpl.2016.29
|
[26] |
P. Mohr, T. Hartmann, K. Vogt, S. Volz, and A. Zilges, “Electric dipole strength below the giant dipole resonance,” AIP Conf. Proc. 610, 870–874 (2002).10.1063/1.1470052
|
[27] |
X. Z. Li, Z. M. Dong, and C. L. Liang, “Studies on p+6Li fusion reaction using 3-parameter model,” J. Fusion Energy 31, 432–436 (2012).10.1007/s10894-011-9483-3
|
[28] |
M. Ghoranneviss, A. Salar Elahi, H. Hora, G. H. Miley, B. Malekynia, and Z. Abdollahi, “Laser fusion energy from p-7Li with minimized radioactivity,” Laser Part. Beams 30, 459–463 (2012).10.1017/s0263034612000341
|
[29] |
D. G. Kovar, D. F. Geesaman, T. H. Braid, Y. Eisen, W. Henning, T. R. Ophel, M. Paul, K. E. Rehm, S. J. Sanders, P. Sperr, J. P. Schiffer, S. L. Tabor, S. Vigdor, B. Zeidman, and F. W. Prosser, “Systematics of carbon- and oxygen-induced fusion on nuclei with 12 ≤ A ≤ 19,” Phys. Rev. C 20(4), 1305 (1979).10.1103/physrevc.20.1305
|
[30] |
R. S. Kemp, A. Danagoulian, R. R. Macdonald, and J. R. Vavrek, “Physical cryptographic verification of nuclear warheads,” Proc. Natl. Acad. Sci. U. S. A. 113(31), 8618–8623 (2016).10.1073/pnas.1603916113
|
[31] |
J. R. Vavrek, B. S. Henderson, and A. Danagoulian, “Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence,” Proc. Natl. Acad. Sci. U. S. A. 115(17), 4363–4368 (2018).10.1073/pnas.1721278115
|
[32] |
J. Pruet, D. P. McNabb, C. A. Hagmann, F. V. Hartemann, and C. P. J. Barty, “Detecting clandestine material with nuclear resonance fluorescence,” J. Appl. Phys. 99(12), 123102 (2006).10.1063/1.2202005
|
[33] |
T. Hayakawa, H. Ohgaki, T. Shizuma, R. Hajima, N. Kikuzawa, E. Minehara, T. Kii, and H. Toyokawa, “Nondestructive detection of hidden chemical compounds with laser Compton-scattering gamma rays,” Rev. Sci. Instrum. 80(4), 045110 (2009).10.1063/1.3125022
|
[34] |
F. R. Metzger, “Resonance fluorescence in nuclei,” Prog. Nucl. Phys. 7, 54 (1959).
|
[35] |
A. Rousse, K. T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin, “Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93(13), 135005 (2004).10.1103/physrevlett.93.135005
|
[36] |
K. Németh, B. Shen, Y. Li, H. Shang, R. Crowell, K. C. Harkay, and J. R. Cary, “Laser-driven coherent betatron oscillation in a laser-wakefield cavity,” Phys. Rev. Lett. 100(9), 095002 (2008).10.1103/PhysRevLett.100.095002
|
[37] |
K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6(5), 308–311 (2012).10.1038/nphoton.2012.82
|
[38] |
C. Liu, G. Golovin, S. Chen, J. Zhang, B. Zhao, D. Haden, S. Banerjee, J. Silano, H. Karwowski, and D. Umstadter, “Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light,” Opt. Lett. 39(14), 4132–4135 (2014).10.1364/ol.39.004132
|
[39] |
W.-M. Wang, Z.-M. Sheng, P. Gibbon, L.-M. Chen, Y.-T. Li, and J. Zhang, “Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime,” Proc. Natl. Acad. Sci. U. S. A. 115(40), 9911–9916 (2018).10.1073/pnas.1809649115
|
[40] |
W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Integrated simulation approach for laser-driven fast ignition,” Phys. Rev. E 91, 013101 (2015).10.1103/PhysRevE.91.013101
|
[41] |
W. M. Wang, P. Gibbon, Z. M. Sheng, Y. T. Li, and J. Zhang, “Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects,” Phys. Rev. E 96, 013201 (2017).10.1103/PhysRevE.96.013201
|
[42] |
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman et al., “GEANT4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250–303 (2003).10.1016/s0168-9002(03)01368-8
|
[43] |
W. Luo, H.-y. Lan, Y. Xu, and D. L. Balabanski, “Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies,” Nucl. Instrum. Methods Phys. Res., Sect. A 849, 49–54 (2017).10.1016/j.nima.2017.01.010
|
[44] |
H. Y. Lan, S. Tan, X. D. Huang, S. Q. Zhao, J. L. Zhou, Z. C. Zhu, Y. Xu, D. L. Balabanski, and W. Luo, “Nuclear resonance fluorescence drug inspection,” Sci. Rep. 11(1), 1306 (2021).10.1038/s41598-020-80079-6
|
[45] |
D. W. Luo, H. Y. Wu, Z. H. Li, C. Xu, H. Hua, X. Q. Li, X. Wang, S. Q. Zhang, Z. Q. Chen, C. G. Wu, Y. Jin, and J. Lin, “Performance of digital data acquisition system in gamma-ray spectroscopy,” Nucl. Sci. Tech. 32(8), 79 (2021).10.1007/s41365-021-00917-8
|
[46] |
S. Akkoyun, A. Algora, B. Alikhani, F. Ameil, G. de Angelis, L. Arnold, A. Astier, A. Ataç, Y. Aubert, C. Aufranc, A. Austin, S. Aydin, F. Azaiez, S. Badoer, D. L. Balabanski, D. Barrientos, G. Baulieu, R. Baumann, D. Bazzacco, F. A. Beck, T. Beck, P. Bednarczyk, M. Bellato, M. A. Bentley, G. Benzoni, R. Berthier, L. Berti, R. Beunard, G. Lo Bianco, B. Birkenbach, P. G. Bizzeti, A. M. Bizzeti-Sona, F. Le Blanc, J. M. Blasco, N. Blasi, D. Bloor, C. Boiano, M. Borsato, D. Bortolato, A. J. Boston, H. C. Boston, P. Bourgault et al., “AGATA—Advanced gamma tracking array,” Nucl. Instrum. Methods Phys. Res., Sect. A 668, 26–58 (2012).10.1016/j.nima.2011.11.081
|
[47] |
C. A. Ur, A. Zilges, N. Pietralla, J. Beller, B. Boisdeffre, M. O. Cernaianu, V. Derya, B. Loher, C. Matei, G. Pascovici, C. Petcu, C. Romig, D. Savran, G. Suliman, E. Udup, and V. Werner, “Nuclear resonance fluorescence experiments at ELI-NP,” Rom. Rep. Phys. 68, S483–S538 (2016).
|
[48] |
H.-Y. Lan, T. Song, Z.-H. Luo, J.-L. Zhou, Z.-C. Zhu, and W. Luo, “Isotope-Sensitive Imaging of Special Nuclear Materials Using Computer Tomography Based on Scattering Nuclear Resonance Fluorescence,” Phys. Rev. Applied 16(5), 054048 (2021).
|
[49] |
H.-Y. Lan, T. Song, J.-L. Zhang, J.-L. Zhou, and W. Luo, “Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy,” Nucl. Sci. Tech. 32(8), 84 (2021).
|