Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 3
May  2022
Turn off MathJax
Article Contents
Qin T.-T., Luo W., Lan H.-Y., Wang W.-M.. Ultrafast probing of plasma ion temperature in proton–boron fusion by nuclear resonance fluorescence emission spectroscopy[J]. Matter and Radiation at Extremes, 2022, 7(3): 035901. doi: 10.1063/5.0078961
Citation: Qin T.-T., Luo W., Lan H.-Y., Wang W.-M.. Ultrafast probing of plasma ion temperature in proton–boron fusion by nuclear resonance fluorescence emission spectroscopy[J]. Matter and Radiation at Extremes, 2022, 7(3): 035901. doi: 10.1063/5.0078961

Ultrafast probing of plasma ion temperature in proton–boron fusion by nuclear resonance fluorescence emission spectroscopy

doi: 10.1063/5.0078961
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: wenluo-ok@163.com and weiminwang1@ruc.edu.cn; a)Authors to whom correspondence should be addressed: wenluo-ok@163.com and weiminwang1@ruc.edu.cn
  • Received Date: 2021-11-16
  • Accepted Date: 2022-02-27
  • Available Online: 2022-05-01
  • Publish Date: 2022-05-01
  • Aneutronic fusion reactions such as proton–boron fusion could efficiently produce clean energy with quite low neutron doses. However, as a consequence, conventional neutron spectral methods for diagnosing plasma ion temperature would no longer work. Therefore, finding a way to probe the ion temperature in aneutronic fusion plasmas is a crucial task. Here, we present a method to realize ultrafast in situ probing of 11B ion temperature for proton–boron fusion by Doppler broadening of the nuclear resonance fluorescence (NRF) emission spectrum. The NRF emission is excited by a collimated, intense γ-ray beam generated from submicrometer wires irradiated by a recently available petawatt (PW) laser pulse, where the γ-ray beam generation is calculated by three-dimensional particle-in-cell simulation. When the laser power is higher than 1 PW, five NRF signatures of a 11B plasma can be clearly identified with high-resolution γ-ray detectors, as shown by our Geant4 simulations. The correlation between the NRF peak width and 11B ion temperature is discussed, and it is found that NRF emission spectroscopy should be sensitive to 11B ion temperatures Ti > 2.4 keV. This probing method can also be extended to other neutron-free-fusion isotopes, such as 6Li and 15N.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).10.1038/239139a0
    [2]
    J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
    [3]
    J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
    [4]
    S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publication, 2004).
    [5]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).10.1016/0030-4018(85)90151-8
    [6]
    D. Pesme and C. Labaune, in La Fusion Thermonucleaire Inertielle par Laser, edited by R. Dautray and J. P. Watteau (Eyrolles, 1993), Vol. 1.
    [7]
    A. P. Fews, P. A. Norreys, F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, P. Lee, and S. J. Rose, “Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets,” Phys. Rev. Lett. 73, 1801–1804 (1994).10.1103/physrevlett.73.1801
    [8]
    A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Y. Bychenkov, “Forward ion acceleration in thin films driven by a high-intensity laser,” Phys. Rev. Lett. 84, 4108–4111 (2000).10.1103/physrevlett.84.4108
    [9]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945–2948 (2000).10.1103/physrevlett.85.2945
    [10]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199
    [11]
    V. T. Voronchev and V. I. Kukulin, “Nuclear-physics aspects of controlled thermonuclear fusion: Analysis of promising fuels and gamma-ray diagnostics of hot plasma,” Phys. At. Nucl. 63, 2051–2066 (2000).10.1134/1.1333874
    [12]
    W. M. Nevins, “A review of confinement requirements for advanced fuels,” J. Fusion Energy 17, 25–32 (1998).10.1023/a:1022513215080
    [13]
    D. Giulietti, P. Andreoli, D. Batani et al., “Laser-plasma energetic particle production for aneutronic nuclear fusion experiments,” Nucl. Instrum. Methods Phys. Res., Sect. B 402, 373–375 (2017).10.1016/j.nimb.2017.03.076
    [14]
    C. Baccou, S. Depierreux, V. Yahia et al., “New scheme to produce aneutronic fusion reactions by laser-accelerated ions,” Laser Part. Beams 33, 117–122 (2015).10.1017/s0263034615000178
    [15]
    B. Nayak, “Reactivities of neutronic and aneutronic fusion fuels,” Ann. Nucl. Energy 60, 73–77 (2013).10.1016/j.anucene.2013.04.025
    [16]
    J. Gruenwald, “Proposal for a novel type of small scale aneutronic fusion reactor,” Plasma Phys. Controlled Fusion 59, 025011 (2016).10.1088/1361-6587/59/2/025011
    [17]
    H. W. Becker, C. Rolfs, and H. P. Trautvetter, “Low-energy cross sections for 11B(p,3α),” Z. Phys. A: At. Nucl. 327, 341–355 (1987).10.1007/bf01284459
    [18]
    R. C. Kirkpatrick and J. A. Wheeler, “The physics of DT ignition in small fusion targets,” Nucl. Fusion 21, 389–401 (1981).10.1088/0029-5515/21/3/008
    [19]
    N. Rostoker, M. W. Binderbauer, and H. J. Monkhorst, “Colliding beam fusion reactor,” Science 278, 1419–1422 (1997).10.1126/science.278.5342.1419
    [20]
    H. Hora, G. H. Miley, S. Eliezer, and N. Nissim, “Pressure of picosecond CPA laser pulses substitute ultrahigh thermal pressures to ignite fusion,” High Energy Density Phys. 35, 100739 (2020).10.1016/j.hedp.2019.100739
    [21]
    D. T. Casey, D. B. Sayre, C. R. Brune, V. A. Smalyuk, C. R. Weber, R. E. Tipton, J. E. Pino, G. P. Grim, B. A. Remington, D. Dearborn, L. R. Benedetti, J. A. Frenje, M. Gatu-Johnson, R. Hatarik, N. Izumi, J. M. McNaney, T. Ma, G. A. Kyrala, S. MacLaren, J. Salmonson, S. F. Khan, A. Pak, L. B. Hopkins, S. LePape, B. K. Spears, N. B. Meezan, L. Divol, C. B. Yeamans, J. A. Caggiano, D. P. McNabb, D. M. Holunga, M. Chiarappa-Zucca, T. R. Kohut, and T. G. Parham, “Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion,” Nat. Phys. 13, 1227–1231 (2017).10.1038/nphys4220
    [22]
    V. Y. Glebov, T. C. Sangster, C. Stoeckl, J. P. Knauer, W. Theobald, K. L. Marshall, M. J. Shoup, T. Buczek, M. Cruz, T. Duffy, M. Romanofsky, M. Fox, A. Pruyne, M. J. Moran, R. A. Lerche, J. McNaney, J. D. Kilkenny, M. J. Eckart, D. Schneider, D. Munro, W. Stoeffl, R. Zacharias, J. J. Haslam, T. Clancy, M. Yeoman, D. Warwas, C. J. Horsfield, J.-L. Bourgade, O. Landoas, L. Disdier, G. A. Chandler, and R. J. Leeper, “The National Ignition Facility neutron time-of-flight system and its initial performance (invited),” Rev. Sci. Instrum. 81, 10D325 (2010).10.1063/1.3492351
    [23]
    C. T. Angell, “Enabling in situ thermometry using transmission nuclear resonance fluorescence,” Nucl. Instrum. Methods Phys. Res., Sect. B 368, 9–14 (2016).10.1016/j.nimb.2015.11.026
    [24]
    Y. Yu and B. Shen, “Ultrafast measurements of ion temperature in high-energy-density plasmas by nuclear resonance fluorescence,” Phys. Plasmas 26, 062708 (2019).10.1063/1.5097641
    [25]
    H. Hora, G. Korn, S. Eliezer, N. Nissim, P. Lalousis, L. Giuffrida, D. Margarone, A. Picciotto, G. H. Miley, S. Moustaizis, J.-M. Martinez-Val, C. P. J. Barty, and G. J. Kirchhoff, “Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor,” High Power Laser Sci. Eng. 4, e35 (2016).10.1017/hpl.2016.29
    [26]
    P. Mohr, T. Hartmann, K. Vogt, S. Volz, and A. Zilges, “Electric dipole strength below the giant dipole resonance,” AIP Conf. Proc. 610, 870–874 (2002).10.1063/1.1470052
    [27]
    X. Z. Li, Z. M. Dong, and C. L. Liang, “Studies on p+6Li fusion reaction using 3-parameter model,” J. Fusion Energy 31, 432–436 (2012).10.1007/s10894-011-9483-3
    [28]
    M. Ghoranneviss, A. Salar Elahi, H. Hora, G. H. Miley, B. Malekynia, and Z. Abdollahi, “Laser fusion energy from p-7Li with minimized radioactivity,” Laser Part. Beams 30, 459–463 (2012).10.1017/s0263034612000341
    [29]
    D. G. Kovar, D. F. Geesaman, T. H. Braid, Y. Eisen, W. Henning, T. R. Ophel, M. Paul, K. E. Rehm, S. J. Sanders, P. Sperr, J. P. Schiffer, S. L. Tabor, S. Vigdor, B. Zeidman, and F. W. Prosser, “Systematics of carbon- and oxygen-induced fusion on nuclei with 12 ≤ A ≤ 19,” Phys. Rev. C 20(4), 1305 (1979).10.1103/physrevc.20.1305
    [30]
    R. S. Kemp, A. Danagoulian, R. R. Macdonald, and J. R. Vavrek, “Physical cryptographic verification of nuclear warheads,” Proc. Natl. Acad. Sci. U. S. A. 113(31), 8618–8623 (2016).10.1073/pnas.1603916113
    [31]
    J. R. Vavrek, B. S. Henderson, and A. Danagoulian, “Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence,” Proc. Natl. Acad. Sci. U. S. A. 115(17), 4363–4368 (2018).10.1073/pnas.1721278115
    [32]
    J. Pruet, D. P. McNabb, C. A. Hagmann, F. V. Hartemann, and C. P. J. Barty, “Detecting clandestine material with nuclear resonance fluorescence,” J. Appl. Phys. 99(12), 123102 (2006).10.1063/1.2202005
    [33]
    T. Hayakawa, H. Ohgaki, T. Shizuma, R. Hajima, N. Kikuzawa, E. Minehara, T. Kii, and H. Toyokawa, “Nondestructive detection of hidden chemical compounds with laser Compton-scattering gamma rays,” Rev. Sci. Instrum. 80(4), 045110 (2009).10.1063/1.3125022
    [34]
    F. R. Metzger, “Resonance fluorescence in nuclei,” Prog. Nucl. Phys. 7, 54 (1959).
    [35]
    A. Rousse, K. T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, and D. Hulin, “Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93(13), 135005 (2004).10.1103/physrevlett.93.135005
    [36]
    K. Németh, B. Shen, Y. Li, H. Shang, R. Crowell, K. C. Harkay, and J. R. Cary, “Laser-driven coherent betatron oscillation in a laser-wakefield cavity,” Phys. Rev. Lett. 100(9), 095002 (2008).10.1103/PhysRevLett.100.095002
    [37]
    K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6(5), 308–311 (2012).10.1038/nphoton.2012.82
    [38]
    C. Liu, G. Golovin, S. Chen, J. Zhang, B. Zhao, D. Haden, S. Banerjee, J. Silano, H. Karwowski, and D. Umstadter, “Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light,” Opt. Lett. 39(14), 4132–4135 (2014).10.1364/ol.39.004132
    [39]
    W.-M. Wang, Z.-M. Sheng, P. Gibbon, L.-M. Chen, Y.-T. Li, and J. Zhang, “Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime,” Proc. Natl. Acad. Sci. U. S. A. 115(40), 9911–9916 (2018).10.1073/pnas.1809649115
    [40]
    W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, “Integrated simulation approach for laser-driven fast ignition,” Phys. Rev. E 91, 013101 (2015).10.1103/PhysRevE.91.013101
    [41]
    W. M. Wang, P. Gibbon, Z. M. Sheng, Y. T. Li, and J. Zhang, “Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects,” Phys. Rev. E 96, 013201 (2017).10.1103/PhysRevE.96.013201
    [42]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman et al., “GEANT4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506(3), 250–303 (2003).10.1016/s0168-9002(03)01368-8
    [43]
    W. Luo, H.-y. Lan, Y. Xu, and D. L. Balabanski, “Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies,” Nucl. Instrum. Methods Phys. Res., Sect. A 849, 49–54 (2017).10.1016/j.nima.2017.01.010
    [44]
    H. Y. Lan, S. Tan, X. D. Huang, S. Q. Zhao, J. L. Zhou, Z. C. Zhu, Y. Xu, D. L. Balabanski, and W. Luo, “Nuclear resonance fluorescence drug inspection,” Sci. Rep. 11(1), 1306 (2021).10.1038/s41598-020-80079-6
    [45]
    D. W. Luo, H. Y. Wu, Z. H. Li, C. Xu, H. Hua, X. Q. Li, X. Wang, S. Q. Zhang, Z. Q. Chen, C. G. Wu, Y. Jin, and J. Lin, “Performance of digital data acquisition system in gamma-ray spectroscopy,” Nucl. Sci. Tech. 32(8), 79 (2021).10.1007/s41365-021-00917-8
    [46]
    S. Akkoyun, A. Algora, B. Alikhani, F. Ameil, G. de Angelis, L. Arnold, A. Astier, A. Ataç, Y. Aubert, C. Aufranc, A. Austin, S. Aydin, F. Azaiez, S. Badoer, D. L. Balabanski, D. Barrientos, G. Baulieu, R. Baumann, D. Bazzacco, F. A. Beck, T. Beck, P. Bednarczyk, M. Bellato, M. A. Bentley, G. Benzoni, R. Berthier, L. Berti, R. Beunard, G. Lo Bianco, B. Birkenbach, P. G. Bizzeti, A. M. Bizzeti-Sona, F. Le Blanc, J. M. Blasco, N. Blasi, D. Bloor, C. Boiano, M. Borsato, D. Bortolato, A. J. Boston, H. C. Boston, P. Bourgault et al., “AGATA—Advanced gamma tracking array,” Nucl. Instrum. Methods Phys. Res., Sect. A 668, 26–58 (2012).10.1016/j.nima.2011.11.081
    [47]
    C. A. Ur, A. Zilges, N. Pietralla, J. Beller, B. Boisdeffre, M. O. Cernaianu, V. Derya, B. Loher, C. Matei, G. Pascovici, C. Petcu, C. Romig, D. Savran, G. Suliman, E. Udup, and V. Werner, “Nuclear resonance fluorescence experiments at ELI-NP,” Rom. Rep. Phys. 68, S483–S538 (2016).
    [48]
    H.-Y. Lan, T. Song, Z.-H. Luo, J.-L. Zhou, Z.-C. Zhu, and W. Luo, “Isotope-Sensitive Imaging of Special Nuclear Materials Using Computer Tomography Based on Scattering Nuclear Resonance Fluorescence,” Phys. Rev. Applied 16(5), 054048 (2021).
    [49]
    H.-Y. Lan, T. Song, J.-L. Zhang, J.-L. Zhou, and W. Luo, “Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy,” Nucl. Sci. Tech. 32(8), 84 (2021).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (244) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return