Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Yao Weipeng, Capitaine Julien, Khiar Benjamin, Vinci Tommaso, Burdonov Konstantin, Béard Jérôme, Fuchs Julien, Ciardi Andrea. Characterization of the stability and dynamics of a laser-produced plasma expanding across a strong magnetic field[J]. Matter and Radiation at Extremes, 2022, 7(2): 026903. doi: 10.1063/5.0058306
Citation: Yao Weipeng, Capitaine Julien, Khiar Benjamin, Vinci Tommaso, Burdonov Konstantin, Béard Jérôme, Fuchs Julien, Ciardi Andrea. Characterization of the stability and dynamics of a laser-produced plasma expanding across a strong magnetic field[J]. Matter and Radiation at Extremes, 2022, 7(2): 026903. doi: 10.1063/5.0058306

Characterization of the stability and dynamics of a laser-produced plasma expanding across a strong magnetic field

doi: 10.1063/5.0058306
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: yao.weipeng@polytechnique.edu
  • Received Date: 2021-05-28
  • Accepted Date: 2022-02-16
  • Available Online: 2022-03-01
  • Publish Date: 2022-03-01
  • Magnetized laser-produced plasmas are central to many studies in laboratory astrophysics, in inertial confinement fusion, and in industrial applications. Here, we present the results of large-scale three-dimensional magnetohydrodynamic simulations of the dynamics of a laser-produced plasma expanding into a transverse magnetic field with a strength of tens of teslas. The simulations show the plasma being confined by the strong magnetic field into a slender slab structured by the magnetized Rayleigh–Taylor instability that develops at the plasma–vacuum interface. We find that when the initial velocity of the plume is perturbed, the slab can develop kink-like motions that disrupt its propagation.
  • loading
  • [1]
    P. A. Bernhardt, R. A. Roussel-Dupre, M. B. Pongratz, G. Haerendel, A. Valenzuela, D. A. Gurnett, and R. R. Anderson, “Observations and theory of the AMPTE magnetotail barium releases,” J. Geophys. Res.: Space Phys. 92, 5777–5794 (1987).10.1029/ja092ia06p05777
    [2]
    S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe et al., “Kilotesla magnetic field due to a capacitor-coil target driven by high power laser,” Sci. Rep. 3, 1170 (2013).10.1038/srep01170
    [3]
    B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht, J. Billette, T. Burris-Mog, S. N. Chen, D. Da Silva, S. Dittrich et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
    [4]
    G. Revet, S. N. Chen, R. Bonito, B. Khiar, E. Filippov, C. Argiroffi, D. P. Higginson, S. Orlando, J. Béard, M. Blecher et al., “Laboratory unraveling of matter accretion in young stars,” Sci. Adv. 3, e1700982 (2017).10.1126/sciadv.1700982
    [5]
    D. B. Schaeffer, W. Fox, D. Haberberger, G. Fiksel, A. Bhattacharjee, D. H. Barnak, S. X. Hu, K. Germaschewski, and R. K. Follett, “High-Mach number, laser-driven magnetized collisionless shocks,” Phys. Plasmas 24, 122702 (2017).10.1063/1.4989562
    [6]
    Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, T. Sano, M. Koenig, C. D. Gregory, N. Woolsey, K. Tomita, H. Takabe et al., “Magnetic reconnection driven by electron dynamics,” Nat. Commun. 9, 5109 (2018).10.1038/s41467-018-07415-3
    [7]
    W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici, J. Béard, S. Bolaños et al., “Laboratory evidence for proton energization by collisionless shock surfing,” Nat. Phys. 17(10), 1177–1182 (2021).10.1038/s41567-021-01325-w
    [8]
    W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici, J. Béard, S. Bolaños et al., “Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization,” Matter Radiat. Extremes 7(1), 014402 (2022).10.1063/5.0055071
    [9]
    K. Burdonov, W. Yao, A. Sladkov, R. Bonito, S. N. Chen, A. Ciardi, A. Korzhimanov et al., “Laboratory modelling of equatorial ‘tongue’accretion channels in young stellar objects caused by the Rayleigh-Taylor instability,” Astron. Astrophys. 657, A112 (2022).10.1051/0004-6361/202140997
    [10]
    [11]
    S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/PhysRevLett.108.025003
    [12]
    J. R. Davies, D. H. Barnak, R. Betti, E. M. Campbell, P.-Y. Chang, A. B. Sefkow, K. J. Peterson, D. B. Sinars, and M. R. Weis, “Laser-driven magnetized liner inertial fusion,” Phys. Plasmas 24, 062701 (2017).10.1063/1.4984779
    [13]
    E. D. Filippov, S. S. Makarov, K. F. Burdonov, W. Yao, G. Revet, J. Béard, S. Bolaños, S. N. Chen, A. Guediche, J. Hare et al., “Enhanced x-ray emission arising from laser-plasma confinement by a strong transverse magnetic field,” Sci. Rep. 11, 8180 (2021).10.1038/s41598-021-87651-8
    [14]
    D. Froula, J. Ross, B. Pollock, P. Davis, A. James, L. Divol, M. Edwards, A. Offenberger, D. Price, R. Town et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001
    [15]
    A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda, H. Pépin, and O. Portugall, “Astrophysics of magnetically collimated jets generated from laser-produced plasmas,” Phys. Rev. Lett. 110, 025002 (2013).10.1103/PhysRevLett.110.025002
    [16]
    B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen et al., “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346, 325–328 (2014).10.1126/science.1259694
    [17]
    D. P. Higginson, G. Revet, B. Khiar, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani et al., “Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle,” High Energy Density Phys. 23, 48–59 (2017).10.1016/j.hedp.2017.02.003
    [18]
    C. Plechaty, R. Presura, and A. A. Esaulov, “Focusing of an explosive plasma expansion in a transverse magnetic field,” Phys. Rev. Lett. 111, 185002 (2013).10.1103/physrevlett.111.185002
    [19]
    A. N. Mostovych, B. H. Ripin, and J. A. Stamper, “Laser produced plasma jets: Collimation and instability in strong transverse magnetic fields,” Phys. Rev. Lett. 62, 2837 (1989).10.1103/physrevlett.62.2837
    [20]
    J. Bruneteau, E. Fabre, H. Lamain, and P. Vasseur, “Experimental investigation of the production and containment of a laser-produced plasma,” Phys. Fluids 13, 1795–1801 (1970).10.1063/1.1693157
    [21]
    T. Matoba and S. Ariga, “Motion and collision of plasma blobs produced by giant pulse laser in a transverse magnetic field,” J. Phys. Soc. Jpn. 30, 1477–1487 (1971).10.1143/jpsj.30.1477
    [22]
    G. Jellison and C. Parsons, “Resonant shadowgraph and schlieren studies of magnetized laser-produced plasmas,” Phys. Fluids 24, 1787–1790 (1981).10.1063/1.863257
    [23]
    S. Okada, K. Sato, and T. Sekiguchi, “Behaviour of laser-produced plasma in a uniform magnetic field–plasma instabilities,” Jpn. J. Appl. Phys. 20, 157 (1981).10.1143/jjap.20.157
    [24]
    B. H. Ripin, E. A. McLean, C. K. Manka, C. Pawley, J. A. Stamper, T. A. Peyser, A. N. Mostovych, J. Grun, A. B. Hassam, and J. Huba, “Large-Larmor-radius interchange instability,” Phys. Rev. Lett. 59, 2299 (1987).10.1103/physrevlett.59.2299
    [25]
    B. H. Ripin, J. D. Huba, E. A. McLean, C. K. Manka, T. Peyser, H. R. Burris, and J. Grun, “Sub-Alfvénic plasma expansion,” Phys. Fluids B 5, 3491–3506 (1993).10.1063/1.860825
    [26]
    D. Winske, “Development of flute modes on expanding plasma clouds,” Phys. Fluids B 1, 1900–1910 (1989).10.1063/1.858922
    [27]
    J. D. Huba, A. B. Hassam, and D. Winske, “Stability of sub-Alfvénic plasma expansions,” Phys. Fluids B 2, 1676–1697 (1990).10.1063/1.859441
    [28]
    T. A. Peyser, C. K. Manka, B. H. Ripin, and G. Ganguli, “Electron–ion hybrid instability in laser-produced plasma expansions across magnetic fields,” Phys. Fluids B 4, 2448–2458 (1992).10.1063/1.860213
    [29]
    A. B. Hassam and J. D. Huba, “Nonlinear evolution of the unmagnetized ion Rayleigh–Taylor instability,” Phys. Fluids B 2, 2001–2006 (1990).10.1063/1.859421
    [30]
    Y. P. Zakharov, V. M. Antonov, E. L. Boyarintsev, A. V. Melekhov, V. G. Posukh, I. F. Shaikhislamov, and V. V. Pickalov, “Role of the Hall flute instability in the interaction of laser and space plasmas with a magnetic field,” Plasma Phys. Rep. 32, 183–204 (2006).10.1134/s1063780x06030020
    [31]
    H.-b. Tang, G.-y. Hu, Y.-h. Liang, Y.-l. Wang, T. Tao, P. Hu, P. Yuan, P. Zhu, Y. Zuo, B. Zhao et al., “Observation of large Larmor radius instability in laser plasma expanding into a 10 T external magnetic field,” Phys. Plasmas 27, 022108 (2020).10.1063/1.5134529
    [32]
    C. Plechaty, R. Presura, S. Stein, D. Martinez, S. Neff, V. Ivanov, and Y. Stepanenko, “Penetration of a laser-produced plasma across an applied magnetic field,” High Energy Density Phys. 6, 258–261 (2010).10.1016/j.hedp.2009.12.006
    [33]
    B. Khiar, G. Revet, A. Ciardi, K. Burdonov, E. Filippov, J. Béard, M. Cerchez, S. N. Chen, T. Gangolf, S. S. Makarov et al., “Laser-produced magnetic-Rayleigh-Taylor unstable plasma slabs in a 20 T magnetic field,” Phys. Rev. Lett. 123, 205001 (2019).10.1103/physrevlett.123.205001
    [34]
    J. P. Chittenden, S. V. Lebedev, C. A. Jennings, S. N. Bland, and A. Ciardi, “X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches,” Plasma Phys. Controlled Fusion 46, B457 (2004).10.1088/0741-3335/46/12b/039
    [35]
    A. Ciardi, S. V. Lebedev, A. Frank, E. G. Blackman, J. P. Chittenden, C. J. Jennings, D. J. Ampleford, S. N. Bland, S. C. Bott, J. Rapley et al., “The evolution of magnetic tower jets in the laboratory,” Phys. Plasmas 14, 056501 (2007).10.1063/1.2436479
    [36]
    [37]
    S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti, D. Del Sarto, T. V. Liseykina, A. Macchi, and F. Pegoraro, “Fluid and kinetic simulation of inertial confinement fusion plasmas,” Comput. Phys. Commun. 169, 153–159 (2005).10.1016/j.cpc.2005.03.036
    [38]
    D. P. Higginson, B. Khiar, G. Revet, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani et al., “Enhancement of quasistationary shocks and heating via temporal staging in a magnetized laser-plasma jet,” Phys. Rev. Lett. 119, 255002 (2017).10.1103/physrevlett.119.255002
    [39]
    B. Trubnikov, “Particle interactions in a fully ionized plasma,” Rev. Plasma Phys 1, 105–140 (1965).
    [40]
    D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood‐Vasey, “Similarity criteria for the laboratory simulation of supernova hydrodynamics,” Astrophys. J. 518, 821 (1999).10.1086/307293
    [41]
    B. Khiar, “Laboratory astrophysics with magnetized laser-produced plasmas,” Ph.D. theses, Université Pierre et Marie Curie–Paris VI, 2017.
    [42]
    T. S. Green and G. B. F. Niblett, “Rayleigh-Taylor instabilities of a magnetically accelerated plasma,” Nucl. Fusion 1, 42 (1960).10.1088/0029-5515/1/1/003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (330) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return