Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Deng Xuewei, Huang Xiaoxia, Wang Deen, Yang Ying, Zhang Xin, Hu Dongxia. Beam wavefront retrieval by convoluted spatial spectral benchmark[J]. Matter and Radiation at Extremes, 2021, 6(4): 045902. doi: 10.1063/5.0050961
Citation: Deng Xuewei, Huang Xiaoxia, Wang Deen, Yang Ying, Zhang Xin, Hu Dongxia. Beam wavefront retrieval by convoluted spatial spectral benchmark[J]. Matter and Radiation at Extremes, 2021, 6(4): 045902. doi: 10.1063/5.0050961

Beam wavefront retrieval by convoluted spatial spectral benchmark

doi: 10.1063/5.0050961
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: xwdeng@caep.cn
  • Received Date: 2021-03-21
  • Accepted Date: 2021-05-21
  • Available Online: 2021-07-01
  • Publish Date: 2021-07-15
  • We propose a method for retrieving a beam wavefront from its near-field intensity distribution after a 4f system by simply inserting a benchmark at the Fourier plane. Through a convolution of the mark-blocked spatial frequency component and the original optical field with the 4f system, the separation between the focus of any sub-aperture and the benchmark can be determined to reconstruct the beam wavefront. Theoretical and experimental studies demonstrate the validity of this method, which has potential applications in real-time wavefront sensing.
  • loading
  • [1]
    D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London, Ser. A 197, 454–487 (1949).10.1098/rspa.1949.0075
    [2]
    J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).10.1364/josaa.11.001949
    [3]
    J. E. Krist and C. J. Burrows, “Phase-retrieval analysis of pre- and post-repair hubble space telescope images,” Appl. Opt. 34(22), 4951–4964 (1995).10.1364/ao.34.004951
    [4]
    D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: Theory and numerical methods,” SIAM Rev. 44(2), 169–224 (2002).10.1137/s003614450139075
    [5]
    J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities,” Science 300(5624), 1419–1421 (2003).10.1126/science.1083887
    [6]
    G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photonics 4, 472–553 (2012).10.1364/aop.4.000472
    [7]
    P. Artal, “Optics of the eye and its impact in vision: A tutorial,” Adv. Opt. Photonics 6, 340–367 (2014).10.1364/aop.6.000340
    [8]
    G. Pedrini, A. Faridian, P. Gao, D. Naik, A. Singh, W. Osten, and M. Takeda, “Phase retrieval methods for optical imaging and metrology,” in 13th Workshop on Information Optics, 2014.
    [9]
    Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: A contemporary overview,” IEEE Signal Process. Mag. 32, 87–109 (2015).10.1109/msp.2014.2352673
    [10]
    S.-Q. Wang, X.-F. Meng, Y.-R. Wang, Y.-K. Yin, and X.-L. Yang, “Phase retrieval algorithm for optical information security,” Chin. Phys. B 28, 084203 (2019).10.1088/1674-1056/28/8/084203
    [11]
    W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai, W. Zhou, F. Wang, D. Xu, X. Xie, B. Feng, Z. Peng, L. Guo, Y. Chen, X. Zhang, L. Liu, D. Lin, Z. Dang, Y. Xiang, R. Zhang, F. Wang, H. Jia, and X. Deng, “Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility,” Matter Radiat. Extremes 2, 243–255 (2017).10.1016/j.mre.2017.07.004
    [12]
    Y. Gao, Y. Cui, L. Ji, D. Rao, X. Zhao, F. Li, D. Liu, W. Feng, L. Xia, J. Liu, H. Shi, P. Du, J. Liu, X. Li, T. Wang, T. Zhang, C. Shan, Y. Hua, W. Ma, X. Sun, X. Chen, X. Huang, J. Zhu, W. Pei, Z. Sui, and S. Fu, “Development of low-coherence high-power laser drivers for inertial confinement fusion,” Matter Radiat. Extremes 5, 065201 (2020).10.1063/5.0009319
    [13]
    Q. Wei, M. Zhang, M. Yu, L. Xue, C. Liu, J. Vargas, F. Liu, and S. Wang, “Rapid quantitative interferometric microscopy using fast Fourier transform and differential–integral based phase retrieval algorithm (FFT-DI-PRA),” Opt. Commun. 456, 124613 (2020).10.1016/j.optcom.2019.124613
    [14]
    S. Wang, K. Yan, and L. Xue, “Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method,” Opt. Commun. 383, 537–544 (2017).10.1016/j.optcom.2016.10.008
    [15]
    Y. Hu, M. Ye, Q. Hao, X. Sun, and S. Wang, “Study on non-phase-shifting phase retrieval methods for interferogram with large phase gradient,” Proc. SPIE 11439, 11439C (2019).10.1117/12.2541761
    [16]
    W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980).10.1364/josa.70.000998
    [17]
    D. Claus, G. Pedrini, and W. Osten, “Iterative phase retrieval based on variable wavefront curvature,” Appl. Opt. 56(13), F134–F137 (2017).10.1364/ao.56.00f134
    [18]
    M. Oliker and M. Mateen, “A direct reconstruction technique to retrieve phase in a non-linear curvature wavefront sensor,” Proc. SPIE 10703, 107035S (2018).10.1117/12.2314286
    [19]
    I. K. Robinson, I. A. Vartanyants, G. J. Williams, M. A. Pfeifer, and J. A. Pitney, “Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction,” Phys. Rev. Lett. 87(19), 195505 (2001).10.1103/physrevlett.87.195505
    [20]
    A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).10.1016/j.ultramic.2009.05.012
    [21]
    V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: Simulation study and experiments,” Optica 4(7), 786–794 (2017).10.1364/optica.4.000786
    [22]
    J. Bacca, S. Pinilla, and H. Arguello, “Super-resolution phase retrieval from designed coded diffraction patterns,” IEEE Trans. Image Process. 29, 2598–2609 (2020).10.1109/tip.2019.2949436
    [23]
    L. Huang, Q. Bian, C. Zhou, T. Li, and M. Gong, “Wavefront sensing based on phase contrast theory and coherent optical processing,” Chin. Phys. B 25(7), 070701 (2016).10.1088/1674-1056/25/7/070701
    [24]
    B. C. Platt and R. Shack, “History and principles of Shack–Hartmann wavefront sensing,” J. Refractive Surg. 17, S573–S577 (2001).10.3928/1081-597x-20010901-13
    [25]
    X. Zhou, Y. Luan, K. Zhou, and X. Zhang, “Efficient method of Shack-Hartmann wavefront sensor assembly,” Proc. SPIE 10256, 102560U (2017).10.1117/12.2256442
    [26]
    Y. Chen, C. Chang, and S. Chen, “Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system,” Proc. SPIE 10502, 1050203 (2018).10.1117/12.2289095
    [27]
    F. Soldevila, V. Duran, P. Clemente, J. Lancis, and E. Tajahuerce, “Phase imaging by spatial wavefront sampling,” Optica 5(2), 164–174 (2018).10.1364/optica.5.000164
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (205) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return