Citation: | Rosmej O. N., Shen X. F., Pukhov A., Antonelli L., Barbato F., Gyrdymov M., Günther M. M., Zähter S., Popov V. S., Borisenko N. G., Andreev N. E.. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6(4): 048401. doi: 10.1063/5.0042315 |
[1] |
S. Fourmaux, S. Corde, K. T. Phuoc et al., “Single shot phase contrast imaging using laser-produced Betatron x-ray beams,” Opt. Lett. 36, 2426 (2011).10.1364/ol.36.002426
|
[2] |
S. Kneip, C. McGuffey, F. Dollar et al., “X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator,” Appl. Phys. Lett. 99, 093701 (2011).10.1063/1.3627216
|
[3] |
J. Wenz, S. Schleede, K. Khrennikov et al., “Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source,” Nat. Commun. 6, 7568 (2015).10.1038/ncomms8568
|
[4] |
J. M. Cole, J. C. Wood, N. C. Lopes et al., “Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone,” Sci. Rep. 5, 13244 (2015).10.1038/srep13244
|
[5] |
J. C. Wood, D. J. Chapman, K. Poder et al., “Ultrafast imaging of laser driven shock waves using betatron x-rays from laser wake-field accelerator,” Sci. Rep. 8, 11010 (2018).10.1038/s41598-018-29347-0
|
[6] |
A. Ravasio, M. Koenig, S. Le Pape et al., “Hard x-ray radiography for density measurement in shock compressed matter,” Phys. Plasmas 15, 060701 (2008).10.1063/1.2928156
|
[7] |
J. Lindl, “Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933 (1995).10.1063/1.871025
|
[8] |
J. Ferri, X. Davoine, S. Y. Kalmykov, and A. Lifschitz, “Electron acceleration and generation of high brilliance x-ray radiation in kilojoule, sub-picosecond laser-plasma interactions,” Phys. Rev. Accel. Beams 19, 10130 (2016).10.1103/physrevaccelbeams.19.101301
|
[9] |
F. Albert and A. G. R. Thomas, “Applications of laser wakefield accelerator-based light sources,” Plasma Phys. Controlled Fusion 58(10), 103001 (2016).10.1088/0741-3335/58/10/103001
|
[10] |
A. Rousse, K. T. Phuoc, R. Shah et al., “Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction,” Phys. Rev. Lett. 93(13), 135005 (2004).10.1103/physrevlett.93.135005
|
[11] |
J. Ju, K. Svensson, A. Döpp et al., “Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes,” Appl. Phys. Lett. 100, 191106 (2012).10.1063/1.4712594
|
[12] |
S. Cipiccia, M. R. Islam, B. Ersfeld et al., “Gamma-rays from harmonically resonant betatron oscillation in plasma wake,” Nat. Phys. 7, 867 (2011).10.1038/nphys2090
|
[13] |
V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).10.1063/1.3695389
|
[14] |
T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267 (1979).10.1103/physrevlett.43.267
|
[15] |
N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov et al., “Resonant excitation of wake-fields by a laser pulse in a plasma,” JETP Lett. 55(3), 571–577 (1992).
|
[16] |
N. E. Andreev, V. I. Kirsanov, and L. M. Gorbunov, “Stimulated processes and self-modulation of short intense laser pulses in laser wake field accelerator,” Phys. Plasmas 2(6), 2573–2582 (1995).10.1063/1.871219
|
[17] |
F. Albert, N. Lemos, J. L. Shaw et al., “Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses,” Phys. Rev. Lett. 118(13), 134801 (2017).10.1103/physrevlett.118.134801
|
[18] |
F. Albert, N. Lemos, J. L. Shaw et al., “Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities,” Nucl. Fusion 59(3), 032003 (2018).10.1088/1741-4326/aad058
|
[19] |
H. Y. Wang, B. Liu, X. Q. Yan, and M. Zepf, “Gamma-ray emission in near critical density plasmas at laser intensities of 1021 W/cm2,” Phys. Plasmas 22, 033102 (2015).10.1063/1.4913991
|
[20] |
T. W. Huang, A. P. L. Robinson, C. T. Zhou et al., “Characteristics of betatron radiation from direct-laser-accelerated electrons,” Phys. Rev. E 93, 063203 (2016).10.1103/PhysRevE.93.063203
|
[21] |
O. N. Rosmej, N. E. Andreev, S. Zaehter et al., “Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays,” New J. Phys. 21, 043044 (2019).10.1088/1367-2630/ab1047
|
[22] |
O. N. Rosmej, M. Gyrdymov, M. M. Günther et al., “High-current laser-driven beams of relativistic electrons for high energy density research” Plasma Phys. Controlled Fusion 62, 115024 (2020).10.1088/1361-6587/abb24e
|
[23] |
S. Y. Gus’kov, J. Limpouch, P. Nicolaï, and V. T. Tikhonchuk, “Laser-supported ionization wave in under-dense gases and foams,” Phys. Plasmas 18, 103114 (2011).10.1063/1.3642615
|
[24] |
N. G. Borisenko, A. M. Khalenkov, V. Kmetik et al., “Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma,” Fusion Sci. Technol. 51(4), 655–664 (2007).10.13182/fst07-a1460
|
[25] |
A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, “Particle acceleration in relativistic laser channels,” Phys. Plasmas 6(7), 2847 (1999).10.1063/1.873242
|
[26] |
A. Pukhov, “Strong field interaction of laser radiation,” Rep. Prog. Phys. 66, 47–101 (2003).10.1088/0034-4885/66/1/202
|
[27] |
L. P. Pugachev, N. E. Andreev, P. R. Levashov, and O. N. Rosmej, “Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 88–93 (2016).10.1016/j.nima.2016.02.053
|
[28] |
V. Bagnoud, B. Aurand, A. Blazevic et al., “Commissioning and early experiments of the PHELIX facility,” Appl. Phys. B 100, 137–150 (2010).10.1007/s00340-009-3855-7
|
[29] |
F. Consoli, R. De Angelis, T. S. Rosinson et al., “Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range-laser-matter interactions,” Sci. Rep. 9, 8551 (2019).10.1038/s41598-019-44937-2
|
[30] |
A. Pukhov, “Tree-dimensional electromagnetic relativistic particle-in-cell code VLPL (virtual laser plasma lab),” J. Plasma Phys. 61, 425–433 (1999).10.1017/s0022377899007515
|
[31] |
J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
|
[32] |
S. Kiselev, A. Pukhov, and I. Kostyukov, “X-ray generation in strongly nonlinear plasma waves,” Phys. Rev. Lett. 93, 135004 (2004).10.1103/physrevlett.93.135004
|
[33] |
C. P. Ridgers, C. S. Brady, R. Duclous et al., “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006
|
[34] |
X. B. Li, B. Qiao, H. X. Chang et al., “Identifying the quantum radiation reaction by using colliding ultraintense lasers in gases,” Phys. Rev. A 98, 052119 (2018).10.1103/physreva.98.052119
|
[35] |
L. P. Pugachev and N. E. Andreev, “Characterization of accelerated electrons generated in foams under the action of petawatt lasers,” J. Phys.: Conf. Ser. 1147, 012080 (2019).10.1088/1742-6596/1147/1/012080
|
[36] |
L. Antonelli, F. Barbato, D. Mancelli et al., “X-ray phase-contrast imaging for laser-induced shock-waves,” Europhys. Lett. 125, 35002 (2019).10.1209/0295-5075/125/35002
|
[37] |
F. Barbato, S. Atzeni, D. Batani et al., “Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source,” Sci. Rep. 9, 18805 (2019).10.1038/s41598-019-55074-1
|
[38] |
J. M. Cowley, Diffraction Physics (Elsevier, 1995), Vol. 9, p. 481.
|
[39] |
D. A. Martinez, V. A. Smalyuk, J. O. Kane et al., “Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF,” Phys. Rev. Lett. 114, 215004 (2015).10.1103/physrevlett.114.215004
|
[40] |
R. Nora, W. Theobald, R. Betti et al., “Gigabar spherical shock generation on the OMEGA laser,” Phys. Rev. Lett. 114, 045001 (2015).10.1103/PhysRevLett.114.045001
|