Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Liu Meifang, Ai Xing, Liu Yiyang, Chen Qiang, Zhang Shuai, He Zhibing, Huang Yawen, Yin Qiang. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6(2): 025901. doi: 10.1063/5.0033103
Citation: Liu Meifang, Ai Xing, Liu Yiyang, Chen Qiang, Zhang Shuai, He Zhibing, Huang Yawen, Yin Qiang. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6(2): 025901. doi: 10.1063/5.0033103

Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion

doi: 10.1063/5.0033103
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: qyin839@sina.com
  • Received Date: 2020-10-25
  • Accepted Date: 2021-01-05
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • Deuterated polymer microspheres can be used as a neutron source in conjunction with lasers because thermonuclear fusion neutrons can be produced efficiently by collisions of the resulting energetic deuterium ions. A new type of solid deuterated polymer microsphere with a carbon hydrogen–carbon deuterium (CH-CD) multilayer has been designed for preparing the target for inertial confinement fusion (ICF) experiments. To fabricate these solid CH-CD multilayer microspheres, CH beads are first fabricated by a microfluidic technique, and the CD coating layer is prepared by a plasma polymerization method. Both polystyrene (PS) and poly(α-methylstyrene) (PAMS) are used as the material sources for the CH beads. The effects of the PS and PAMS materials on the quality of the solid CH beads and the resulting CH-CD multilayer polymer microspheres are investigated. The solid PS beads have better sphericity and a smoother surface, but large vacuoles are observed in solid PS-CD multilayer microspheres owing to the presence of residual fluorobenzene in the beads and a glass transition temperature of the solid PS beads that is lower than the temperature of plasma polymerization. Therefore, solid PAMS beads are more suitable as a mandrel for fabricating solid CH-CD multilayer polymer microspheres. Solid CH-CD multilayer microspheres with specified size have been successfully prepared by controlling the droplet size and the CD deposition rate and deposition time. Compared with the design value, the diameter deviation of the inner CH beads and the thickness deviation of the CD layer can be controlled within 20 µm and 2 µm, respectively. Thus, an approach has been developed to fabricate solid CH-CD multilayer microspheres that meet the physical design requirements for ICF.
  • loading
  • [1]
    O. A. Hurricane, D. A. Callahan, D. T. Caseyspc et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).10.1038/nature13008
    [2]
    M. Tabak, J. Hammer, M. E. Glinsky et al., “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
    [3]
    R. Betti, C. D. Zhou, K. S. Anderson et al., “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [4]
    G. Ren, J. Yan, J. Liu et al., “Neutron generation by laser-driven spherically convergent plasma fusion,” Phys. Rev. Lett. 118, 165001 (2017).10.1103/physrevlett.118.165001
    [5]
    D. L. Wilcox and M. Berg, “Microsphere fabrication and applications: An overview,” MRS Proc. 372, 3 (1994).10.1557/proc-372-3
    [6]
    C. Lattaud, L. Guillot, C.-H. Brachais et al., “Influence of a density mismatch on TMPTMA shells nonconcentricity,” J. Appl. Polym. Sci. 124, 4882–4888 (2012).10.1002/app.35581
    [7]
    A. V. Pastukhov, V. A. Davankov, A. A. Akunets et al., “Hollow poly(alpha-methylstyrene) shells for inertial confinement fusion targets,” J. Phys.: Conf. Ser. 907, 012020 (2017).10.1088/1742-6596/907/1/012020
    [8]
    D. R. Harding, M. J. Bonino, W. Sweet et al., “Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments,” Matter Radiat. Extremes 3, 312–321 (2018).10.1016/j.mre.2018.08.001
    [9]
    J. Biener, D. D. Ho, C. Wild et al., “Diamond spheres for inertial confinement fusion,” Nucl. Fusion 49, 112001 (2009).10.1088/0029-5515/49/11/112001
    [10]
    X. T. He, H.-b. Cai, S.-z. Wu et al., “Physical studies of fast ignition in China,” Plasma Phys. Controlled Fusion 57, 064003 (2015).10.1088/0741-3335/57/6/064003
    [11]
    Y. Mori, Y. Nishimura, K. Ishii et al., “1-Hz Bead-Pellet injection system for fusion reaction engaged by a laser HAMA using ultra-intense counter beams,” Fusion Sci. Technol. 75, 36–48 (2019).10.1080/15361055.2018.1499393
    [12]
    L. Q. Shan, H. B. Cai, W. S. Zhang et al., “Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums,” Phys. Rev. Lett. 120, 195001 (2018).10.1103/PhysRevLett.120.195001
    [13]
    R. Hu, W. T. Kan, X. L. Xiong et al., “Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source,” J. Nucl. Mater. 492, 171–177 (2017).10.1016/j.jnucmat.2017.05.034
    [14]
    M. Takagi, T. Norimatsu, T. Yamanaka et al., “Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method,” J. Vac. Sci. Technol., A 9, 2145–2148 (1991).10.1116/1.577241
    [15]
    K. Nagai, H. Yang, T. Norimatsu et al., “Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the fast ignition realization experiment (FIREX) project,” Nucl. Fusion 49, 095028 (2009).10.1088/0029-5515/49/9/095028
    [16]
    M. F. Liu, Y. W. Huang, S. F. Chen et al., “Progress and challenges in the fabrication of DPS shells for ICF,” Matter Radiat. Extremes 4, 018401 (2019).10.1063/1.5081945
    [17]
    M. F. Liu, Y. Q. Zheng, Q. Chen et al., “Controllable production of deuterated polymer beads for ICF,” J. Nucl. Mater. 535, 152159 (2020).10.1016/j.jnucmat.2020.152159
    [18]
    M. F. Liu, S. F. Chen, X. B. Qi et al., “Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching,” Chem. Eng. J. 241, 466–476 (2014).10.1016/j.cej.2013.08.120
    [19]
    M. Takagi, R. Cook, R. Stephens et al., “Decreasing out-of-round in poly(a-methystyrene)mandrels by increasing interfacial tension,” Fusion technology 38, 46–49 (2000).10.13182/fst00-a36114
    [20]
    S. Bhandarkar, R. Paguio, F. Elsner et al., “Understanding the critical parameters of the PAMS mandrel fabrication process,” Fusion Sci. Technol. 70, 127–136 (2016).10.13182/fst15-245
    [21]
    F. Zhang, H. B. Cai, W. M. Zhou et al., “Enhanced energy coupling for indirect-drive fast-ignition fusion targets,” Nat. Phys. 16, 810–814 (2020).10.1038/s41567-020-0878-9
    [22]
    H. B. Cai, L. Q. Shan, Z. Q. Yuan et al., “Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums,” High Energy Density Phys. 36, 100756 (2020).10.1016/j.hedp.2020.100756
    [23]
    Y. W. Huang, M. F. Liu, X. N. Wei et al., A method of preparing deuterated polystyrene, China, 2016.
    [24]
    R. C. Cook and A. Nikroo, IR Extinction coefficient measurements of CH and CD GDP shells, USA, 2003.
    [25]
    D. J. Plazek and K. L. Ngai, Physical Properties of Polymers Handbook, 2th ed. (Springer, New York, NY, 2007).
    [26]
    L. Lurio, H. Kim, A. Rühm et al., “Surface tension and surface roughness of supported polystyrene films,” Macromolecules 36, 5704–5709 (2003).10.1021/ma034189l
    [27]
    L. Ye, M. Liu, Y. Huang et al., “Effects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogen,” J. Macromol. Sci., Part B. 54, 1479–1494 (2015).10.1080/00222348.2015.1094645
    [28]
    H. Liu, Z. B. He, J. J. Wei et al., “Chemical structure and mechanical properties of glow discharge polymer films and deuterated glow discharge polymer films,” High Power Laser Particle Beams 27, 032028 (2015).10.3788/hplpb20152703.32028s
    [29]
    X. Ai, X.-S. He, J.-L. Huang et al., “The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma,” J. Phys. D: Appl. Phys. 51, 095604 (2018).10.1088/1361-6463/aaa87f
    [30]
    J. E. G. Lipson and S. T. Milner, “Multiple glass transitions and local composition effects on polymer solvent mixtures,” J. Polym. Sci., Part B 44, 3528–3545 (2006).10.1002/polb.21023
    [31]
    H. Jansson, R. Bergman, and J. Swenson, “Role of solvent for the dynamics and the glass transition of proteins,” J. Phys. Chem. B 115, 4099–4109 (2011).10.1021/jp1089867
    [32]
    M. Theobald, C. Chicanne, J. Barnouin et al., “Gas etching to obtain germanium doped CHx microshells compatible with the laser megajoule target specifications,” Fusion Sci. Technol. 49, 757–763 (2006).10.13182/fst49-757
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (233) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return