Citation: | Liu Meifang, Ai Xing, Liu Yiyang, Chen Qiang, Zhang Shuai, He Zhibing, Huang Yawen, Yin Qiang. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6(2): 025901. doi: 10.1063/5.0033103 |
[1] |
O. A. Hurricane, D. A. Callahan, D. T. Caseyspc et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).10.1038/nature13008
|
[2] |
M. Tabak, J. Hammer, M. E. Glinsky et al., “Ignition and high gain with ultrapowerful lasers,” Phys. Plasmas 1, 1626–1634 (1994).10.1063/1.870664
|
[3] |
R. Betti, C. D. Zhou, K. S. Anderson et al., “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
|
[4] |
G. Ren, J. Yan, J. Liu et al., “Neutron generation by laser-driven spherically convergent plasma fusion,” Phys. Rev. Lett. 118, 165001 (2017).10.1103/physrevlett.118.165001
|
[5] |
D. L. Wilcox and M. Berg, “Microsphere fabrication and applications: An overview,” MRS Proc. 372, 3 (1994).10.1557/proc-372-3
|
[6] |
C. Lattaud, L. Guillot, C.-H. Brachais et al., “Influence of a density mismatch on TMPTMA shells nonconcentricity,” J. Appl. Polym. Sci. 124, 4882–4888 (2012).10.1002/app.35581
|
[7] |
A. V. Pastukhov, V. A. Davankov, A. A. Akunets et al., “Hollow poly(alpha-methylstyrene) shells for inertial confinement fusion targets,” J. Phys.: Conf. Ser. 907, 012020 (2017).10.1088/1742-6596/907/1/012020
|
[8] |
D. R. Harding, M. J. Bonino, W. Sweet et al., “Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments,” Matter Radiat. Extremes 3, 312–321 (2018).10.1016/j.mre.2018.08.001
|
[9] |
J. Biener, D. D. Ho, C. Wild et al., “Diamond spheres for inertial confinement fusion,” Nucl. Fusion 49, 112001 (2009).10.1088/0029-5515/49/11/112001
|
[10] |
X. T. He, H.-b. Cai, S.-z. Wu et al., “Physical studies of fast ignition in China,” Plasma Phys. Controlled Fusion 57, 064003 (2015).10.1088/0741-3335/57/6/064003
|
[11] |
Y. Mori, Y. Nishimura, K. Ishii et al., “1-Hz Bead-Pellet injection system for fusion reaction engaged by a laser HAMA using ultra-intense counter beams,” Fusion Sci. Technol. 75, 36–48 (2019).10.1080/15361055.2018.1499393
|
[12] |
L. Q. Shan, H. B. Cai, W. S. Zhang et al., “Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums,” Phys. Rev. Lett. 120, 195001 (2018).10.1103/PhysRevLett.120.195001
|
[13] |
R. Hu, W. T. Kan, X. L. Xiong et al., “Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source,” J. Nucl. Mater. 492, 171–177 (2017).10.1016/j.jnucmat.2017.05.034
|
[14] |
M. Takagi, T. Norimatsu, T. Yamanaka et al., “Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method,” J. Vac. Sci. Technol., A 9, 2145–2148 (1991).10.1116/1.577241
|
[15] |
K. Nagai, H. Yang, T. Norimatsu et al., “Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the fast ignition realization experiment (FIREX) project,” Nucl. Fusion 49, 095028 (2009).10.1088/0029-5515/49/9/095028
|
[16] |
M. F. Liu, Y. W. Huang, S. F. Chen et al., “Progress and challenges in the fabrication of DPS shells for ICF,” Matter Radiat. Extremes 4, 018401 (2019).10.1063/1.5081945
|
[17] |
M. F. Liu, Y. Q. Zheng, Q. Chen et al., “Controllable production of deuterated polymer beads for ICF,” J. Nucl. Mater. 535, 152159 (2020).10.1016/j.jnucmat.2020.152159
|
[18] |
M. F. Liu, S. F. Chen, X. B. Qi et al., “Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching,” Chem. Eng. J. 241, 466–476 (2014).10.1016/j.cej.2013.08.120
|
[19] |
M. Takagi, R. Cook, R. Stephens et al., “Decreasing out-of-round in poly(a-methystyrene)mandrels by increasing interfacial tension,” Fusion technology 38, 46–49 (2000).10.13182/fst00-a36114
|
[20] |
S. Bhandarkar, R. Paguio, F. Elsner et al., “Understanding the critical parameters of the PAMS mandrel fabrication process,” Fusion Sci. Technol. 70, 127–136 (2016).10.13182/fst15-245
|
[21] |
F. Zhang, H. B. Cai, W. M. Zhou et al., “Enhanced energy coupling for indirect-drive fast-ignition fusion targets,” Nat. Phys. 16, 810–814 (2020).10.1038/s41567-020-0878-9
|
[22] |
H. B. Cai, L. Q. Shan, Z. Q. Yuan et al., “Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums,” High Energy Density Phys. 36, 100756 (2020).10.1016/j.hedp.2020.100756
|
[23] |
Y. W. Huang, M. F. Liu, X. N. Wei et al., A method of preparing deuterated polystyrene, China, 2016.
|
[24] |
R. C. Cook and A. Nikroo, IR Extinction coefficient measurements of CH and CD GDP shells, USA, 2003.
|
[25] |
D. J. Plazek and K. L. Ngai, Physical Properties of Polymers Handbook, 2th ed. (Springer, New York, NY, 2007).
|
[26] |
L. Lurio, H. Kim, A. Rühm et al., “Surface tension and surface roughness of supported polystyrene films,” Macromolecules 36, 5704–5709 (2003).10.1021/ma034189l
|
[27] |
L. Ye, M. Liu, Y. Huang et al., “Effects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogen,” J. Macromol. Sci., Part B. 54, 1479–1494 (2015).10.1080/00222348.2015.1094645
|
[28] |
H. Liu, Z. B. He, J. J. Wei et al., “Chemical structure and mechanical properties of glow discharge polymer films and deuterated glow discharge polymer films,” High Power Laser Particle Beams 27, 032028 (2015).10.3788/hplpb20152703.32028s
|
[29] |
X. Ai, X.-S. He, J.-L. Huang et al., “The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma,” J. Phys. D: Appl. Phys. 51, 095604 (2018).10.1088/1361-6463/aaa87f
|
[30] |
J. E. G. Lipson and S. T. Milner, “Multiple glass transitions and local composition effects on polymer solvent mixtures,” J. Polym. Sci., Part B 44, 3528–3545 (2006).10.1002/polb.21023
|
[31] |
H. Jansson, R. Bergman, and J. Swenson, “Role of solvent for the dynamics and the glass transition of proteins,” J. Phys. Chem. B 115, 4099–4109 (2011).10.1021/jp1089867
|
[32] |
M. Theobald, C. Chicanne, J. Barnouin et al., “Gas etching to obtain germanium doped CHx microshells compatible with the laser megajoule target specifications,” Fusion Sci. Technol. 49, 757–763 (2006).10.13182/fst49-757
|