Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 6 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Tikhonchuk V. T., Gong T., Jourdain N., Renner O., Condamine F. P., Pan K. Q., Nazarov W., Hudec L., Limpouch J., Liska R., Krůs M., Wang F., Yang D., Li S. W., Li Z. C., Guan Z. Y., Liu Y. G., Xu T., Peng X. S., Liu X. M., Li Y. L., Li J., Song T. M., Yang J. M., Jiang S. E., Zhang B. H., Huo W. Y., Ren G., Chen Y. H., Zheng W., Ding Y. K., Lan K., Weber S.. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype[J]. Matter and Radiation at Extremes, 2021, 6(2): 025902. doi: 10.1063/5.0023006
Citation: Tikhonchuk V. T., Gong T., Jourdain N., Renner O., Condamine F. P., Pan K. Q., Nazarov W., Hudec L., Limpouch J., Liska R., Krůs M., Wang F., Yang D., Li S. W., Li Z. C., Guan Z. Y., Liu Y. G., Xu T., Peng X. S., Liu X. M., Li Y. L., Li J., Song T. M., Yang J. M., Jiang S. E., Zhang B. H., Huo W. Y., Ren G., Chen Y. H., Zheng W., Ding Y. K., Lan K., Weber S.. Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype[J]. Matter and Radiation at Extremes, 2021, 6(2): 025902. doi: 10.1063/5.0023006

Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial confinement fusion on the Shenguang III prototype

doi: 10.1063/5.0023006
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: vladimir.tikhonchuk@eli-beams.eu
  • Received Date: 2020-07-27
  • Accepted Date: 2021-02-02
  • Available Online: 2021-03-01
  • Publish Date: 2021-03-15
  • The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs. A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy (3.2 kJ) laser beams. An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution. Multiple diagnostics are used for plasma characterization, scattered radiation, and accelerated electrons. The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization. The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation, possibly because of a greater plasma density. Notable amplification is achieved in high-intensity speckles, indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.
  • loading
  • [1]
    T. Gong, Z. Li, B. Zhao, G.-Y. Hu, and J. Zheng, “Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach,” Phys. Plasmas 20, 092702 (2013).10.1063/1.4821827
    [2]
    C. Tian, L. Shan, B. Zhang, W. Zhou, D. Liu, B. Bi, F. Zhang, W. Wang, B. Zhang, and Y. Gu, “Realization of high irradiation uniformity for direct drive ICF at the SG-III prototype laser facility,” Eur. Phys. J. D 69, 54 (2015).10.1140/epjd/e2015-50828-x
    [3]
    T. Gong, L. Hao, Z. Li, D. Yang, S. Li, X. Li, L. Guo, S. Zou, Y. Liu, X. Jiang, X. Peng, T. Xu, X. Liu, Y. Li, C. Zheng, H. Cai, Z. Liu, J. Zheng, Z. Wang, Q. Li, P. Li, R. Zhang, Y. Zhang, F. Wang, D. Wang, F. Wang, S. Liu, J. Yang, S. Jiang, B. Zhang, and Y. Ding, “Recent research progress of laser plasma interactions in Shenguang laser facilities,” Matter Radiat. Extremes 4, 055202 (2019).10.1063/1.5092446
    [4]
    C. Labaune, “Effect of the laser wavelength: A long story of laser-plasma interaction physics for Inertial Confinement Fusion Teller Medal Lecture,” EPJ Web Conf. 59, 01012 (2013).10.1051/epjconf/20135901012
    [5]
    B. Yaakobi, P.-Y. Chang, C. Stoeckl, A. Solodov, D. H. Edgell, R. S. Craxton, S. X. Hu, J. F. Myatt, F. J. Marshall, W. Seka, and D. H. Froula, “Fast-electron generation in long-scale-length plasmas,” Phys. Plasmas 19, 012704 (2012).10.1063/1.3676153
    [6]
    J. F. Myatt, J. Zhang, R. W. Short, A. V. Maximov, W. Seka, D. H. Froula, D. H. Edgell, D. T. Michel, I. V. Igumenshchev, D. E. Hinkel, P. Michel, and J. D. Moody, “Multiple-beam laser–plasma interactions in inertial confinement fusion,” Phys. Plasmas 21, 055501 (2014).10.1063/1.4878623
    [7]
    R. K. Follett, J. F. Myatt, J. G. Shaw, D. T. Michel, A. A. Solodov, D. H. Edgell, B. Yaakobi, and D. H. Froula, “Simulations and measurements of hot-electron generation driven by the multibeam two-plasmon-decay instability,” Phys. Plasmas 24, 102134 (2017).10.1063/1.4998934
    [8]
    W. Theobald, A. Bose, R. Yan, R. Betti, M. Lafon, D. Mangino, A. R. Christopherson, C. Stoeckl, W. Seka, W. Shang, D. T. Michel, C. Ren, R. C. Nora, A. Casner, J. Peebles, F. N. Beg, X. Ribeyre, E. Llor Aisa, A. Colaïtis, V. Tikhonchuk, and M. S. Wei, “Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition,” Phys. Plasmas 24, 120702 (2017).10.1063/1.4986797
    [9]
    S. Weber, C. Riconda, O. Klimo, A. Heron, and V. T. Tikhonchuk, “Fast saturation of the two-plasmon-decay instability for shock-ignition conditions,” Phys. Rev. E 85, 016403 (2012).10.1103/physreve.85.016403
    [10]
    B. B. Afeyan and E. A. Williams, “Unified theory of stimulated Raman scattering and two-plasmon decay in inhomogeneous plasmas: High frequency hybrid instability,” Phys. Rev. Lett. 75, 4218 (1995).10.1103/physrevlett.75.4218
    [11]
    D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger, O. Klimo, M. Koenig, C. Labaune, X. Ribeyre, C. Rousseaux, G. Schurtz, W. Theobald, and V. T. Tikhonchuk, “Physics issues for shock ignition,” Nucl. Fusion 54, 054009 (2014).10.1088/0029-5515/54/5/054009
    [12]
    S. Weber and C. Riconda, “Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion,” High Power Laser Sci. Eng. 3, e6 (2015).10.1017/hpl.2014.50
    [13]
    C. Riconda, S. Weber, V. T. Tikhonchuk, and A. Héron, “Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion,” Phys. Plasmas 18, 092701 (2011).10.1063/1.3630937
    [14]
    C. Riconda and S. Weber, “Raman–Brillouin interplay for inertial confinement fusion relevant laser–plasma interaction,” High Power Laser Sci. Eng. 4, e23 (2016).10.1017/hpl.2016.22
    [15]
    O. Klimo, S. Weber, V. T. Tikhonchuk, and J. Limpouch, “Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario,” Plasma Phys. Controlled Fusion 52, 055013 (2010).10.1088/0741-3335/52/5/055013
    [16]
    O. Klimo and V. T. Tikhonchuk, “Laser-plasma interaction studies in the context of shock ignition: The regime dominated by parametric instabilities,” Plasma Phys. Controlled Fusion 55, 095002 (2013).10.1088/0741-3335/55/9/095002
    [17]
    O. Klimo, J. Psikal, V. T. Tikhonchuk, and S. Weber, “Two-dimensional simulations of laser–plasma interaction and hot electron generation in the context of shock-ignition research,” Plasma Phys. Controlled Fusion 56, 055010 (2014).10.1088/0741-3335/56/5/055010
    [18]
    Y. J. Gu, O. Klimo, Ph. Nicolaï, S. Shekhanov, S. Weber, and V. T. Tikhonchuk, “Collective absorption of laser radiation in plasma at sub-relativistic intensities,” High Power Laser Sci. Eng. 7, e39 (2019).10.1017/hpl.2019.25
    [19]
    S. Depierreux, C. Labaune, D. T. Michel, C. Stenz, Ph. Nicolaï, M. Grech, G. Riazuelo, S. Weber, C. Riconda, V. T. Tikhonchuk, P. Loiseau, N. G. Borisenko, W. Nazarov, S. Hüller, D. Pesme, M. Casanova, J. Limpouch, C. Meyer, P. Di-Nicola, R. Wrobel, E. Alozy, P. Romary, G. Thiell, G. Soullie, C. Reverdin, and B. Villette, “Laser smoothing and imprint reduction with a foam layer in the multikilojoule regime,” Phys. Rev. Lett. 102, 195005 (2009).10.1103/physrevlett.102.195005
    [20]
    S. Depierreux, C. Neuville, C. Baccou, V. Tassin, M. Casanova, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, A. Colaïtis, A. Debayle, G. Duchateau, A. Héron, S. Hüller, P. Loiseau, Ph. Nicolaï, D. Pesme, C. Riconda, G. Tran, R. Bahr, J. Katz, C. Stoeckl, W. Seka, V. Tikhonchuk, and C. Labaune, “Experimental investigation of the collective Raman scattering of multiple laser beams in inhomogeneous plasmas,” Phys. Rev. Lett. 117, 235002 (2016).10.1103/physrevlett.117.235002
    [21]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel, M. Hohenberger, R. W. Short, R. Epstein, S. P. Regan, E. M. Campbell, T. Chapman, C. Goyon, J. E. Ralph, M. A. Barrios, J. D. Moody, and J. W. Bates, “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001
    [22]
    K. Nagai, C. S. A. Musgrave, and W. Nazarov, “A review of low density porous materials used in laser plasma experiments,” Phys. Plasmas 25, 030501 (2018).10.1063/1.5009689
    [23]
    M. Desselberger, M. W. Jones, J. Edwards, M. Dunne, and O. Willi, “Use of x-ray preheated foam layers to reduce beam structure imprint in laser-driven targets,” Phys. Rev. Lett. 74, 2961 (1995).10.1103/physrevlett.74.2961
    [24]
    S. N. Chen, T. Iwawaki, K. Morita, P. Antici, S. D. Baton, F. Filippi, H. Habara, M. Nakatsutsumi, Ph. Nicolai, W. Nazarov, C. Rousseaux, M. Starodubstev, K. A. Tanaka, and J. Fuchs, “Density and temperature characterization of longscale length, near-critical density controlled plasma produced from ultra-low density plastic foam,” Sci. Rep. 6, 21495 (2017).10.1038/srep21495
    [25]
    R. J. Mason, R. A. Kopp, H. X. Vu, D. C. Wilson, S. R. Goldman, R. G. Watt, M. Dunne, and O. Willi, “Computational study of laser imprint mitigation in foam-buffered inertial confinement fusion targets,” Phys. Plasmas 5, 211 (1998).10.1063/1.872690
    [26]
    T. Kapin, M. Kuchařík, J. Limpouch, and R. Liska, “Hydrodynamic simulations of laser interactions with low-density foams,” Czech J. Phys. 56, B493 (2006).10.1007/s10582-006-0243-y
    [27]
    S. Yu. Gus’kov, J. Limpouch, Ph. Nicolaï, and V. T. Tikhonchuk, “Laser-supported ionization wave in under-dense gases and foams,” Phys. Plasmas 18, 103114 (2011).10.1063/1.3642615
    [28]
    J. Velechovsky, J. Limpouch, R. Liska, and V. Tikhonchuk, “Hydrodynamic modeling of laser interaction with micro-structured targets,” Plasma Phys. Controlled Fusion 58, 095004 (2016).10.1088/0741-3335/58/9/095004
    [29]
    M. Cipriani, S. Yu. Gus’kov, R. De Angelis, F. Consoli, A. A. Rupasov, P. Andreoli, G. Cristofari, G. Di Giorgio, and F. Ingenito, “Laser-supported hydrothermal wave in low-dense porous substance,” Laser Part. Beams 36, 121 (2018).10.1017/s0263034618000022
    [30]
    M. A. Belyaev, R. L. Berger, O. S. Jones, S. H. Langer, and D. A. Mariscal, “Laser propagation in a subcritical foam: Ion and electron heating,” Phys. Plasmas 25, 123109 (2018).10.1063/1.5050531
    [31]
    V. Tikhonchuk, Y. J. Gu, O. Klimo, J. Limpouch, and S. Weber, “Studies of laser-plasma interaction physics with low-density targets for direct-drive inertial connement schemes,” Matter Radiat. Extremes 4, 045402 (2019).10.1063/1.5090965
    [32]
    W. Zheng and G. Zhang, “2D hydrodynamic simulation of a line-focused plasma in Ni-like Ag x-ray laser research,” Chin. Phys. B 16, 2439 (2007).10.1088/1009-1963/16/8/047
    [33]
    W. Zheng and G. Zhang, “2D simulation of an Ag planar target driven by focus-line laser,” Chin. J. Comput. Phys. 25, 36 (2008), http://www.cjcp.org.cn/EN/abstract/abstract875.shtml.
    [34]
    R. Liska, M. Kuchařík, J. Limpouch, O. Renner, P. Váchal, L. Bednárik, and J. Velechovský, “ALE method for simulations of laser-produced plasmas,” Finite Vol. Complex Appl. VI 4, 857 (2011).10.1007/978-3-642-20671-9_87
    [35]
    F. J. D. Serduke, E. Minguez, S. J. Davidson, and C. A. Iglesias, “WorkOp-IV summary: Lessons from iron opacities,” J. Quant. Spectrosc. Radiat. Transfer 65, 527 (2000).10.1016/s0022-4073(99)00094-1
    [36]
    R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059 (1988).10.1063/1.866963
    [37]
    S. Yu. Gus’kov, M. Cipriani, R. De Angelis, F. Consoli, A. A. Rupasov, P. Andreoli, G. Cristofari, and G. Di Giorgio, “Absorption coefficient for nanosecond laser pulse in porous material,” Plasma Phys. Controlled Fusion 57, 125004 (2015).10.1088/0741-3335/57/12/125004
    [38]
    M. Šmìd, O. Renner, F. Rosmej, and D. Khaghani, “Investigation of x-ray emission induced by hot electrons in dense Cu plasmas,” Phys. Scr. T161, 014020 (2014).10.1088/0031-8949/2014/T161/014020
    [39]
    A. D. Dahl, “SIMION for the personal computer in reflection,” Int. J. Mass Spectrom. 3, 2000 (200).10.1016/S1387-3806(00)00305-5
    [40]
    S. Depierreux, P. Loiseau, D. T. Michel, V. Tassin, C. Stenz, P.-E. Masson-Laborde, C. Goyon, V. Yahia, and C. Labaune, “Experimental investigation of the stimulation Brillouin scatering growth and saturation at 526 and 351 nm for direct drive and shock ignition,” Phys. Plasmas 19, 012705 (2012).10.1063/1.3677256
    [41]
    V. Yahia, P.-E. Masson-Laborde, S. Depierreux, C. Goyon, G. Loisel, C. Baccou, N. G. Borisenko, A. Orekhov, T. Rienecker, O. Rosmej, D. Teychenné, and C. Labaune, “Reduction of stimulated Brillouin backscattering with plasma beam smoothing,” Phys. Plasmas 22, 042707 (2015).10.1063/1.4918942
    [42]
    P. E. Masson-Laborde, S. Hüller, D. Pesme, Ch. Labaune, S. Depierreux, P. Loiseau, and H. Bandulet, “Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma,” Phys. Plasmas 21, 032703 (2014).10.1063/1.4867659
    [43]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley; CRC Press, Redwood, CA, 1988), ISBN: 978-0367314187.
    [44]
    C. S. Liu, M. N. Rosenbluth, and R. B. White, “Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasma,” Phys. Fluids 17, 1211 (1974).10.1063/1.1694867
    [45]
    H. A. Rose, “Random phase plate hot spots and their effect on stimulated Brillouin backscatter and self-focusing,” Phys. Plasmas 2, 2216 (1995).10.1063/1.871244
    [46]
    V. T. Tikhonchuk, C. Labaune, and H. A. Baldis, “Modeling of a stimulated Brillouin scattering experiment with statistical distribution of speckles,” Phys. Plasmas 3, 3777 (1996).10.1063/1.871510
    [47]
    V. T. Tikhonchuk, Ph. Mounaix, and D. Pesme, “Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma,” Phys. Plasmas 4, 2658 (1997).10.1063/1.872351
    [48]
    M. Grech, G. Riazuelo, D. Pesme, S. Weber, and V. T. Tikhonchuk, “Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray,” Phys. Rev. Lett. 102, 155001 (2009).10.1103/PhysRevLett.102.155001
    [49]
    C. Hombourger, “An empirical expression for K-shell ionization cross section by electron impact,” J. Phys. B: At., Mol. Opt. Phys. 31, 3693 (1998).10.1088/0953-4075/31/16/020
    [50]
    A. G. R. Thomas, M. Sherlock, C. Kuranz, C. P. Ridgers, and R. P. Drake, “Hybrid Vlasov–Fokker–Planck–Maxwell simulations of fast electron transport and the time dependance of K-shell excitation in a mid-Z metallic target,” New J. Phys. 4, 015017 (2013).10.1088/1367-2630/15/1/015017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (366) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return