Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Xue Kun, Dou Zhen-Ke, Wan Feng, Yu Tong-Pu, Wang Wei-Min, Ren Jie-Ru, Zhao Qian, Zhao Yong-Tao, Xu Zhong-Feng, Li Jian-Xing. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5(5): 054402. doi: 10.1063/5.0007734
Citation: Xue Kun, Dou Zhen-Ke, Wan Feng, Yu Tong-Pu, Wang Wei-Min, Ren Jie-Ru, Zhao Qian, Zhao Yong-Tao, Xu Zhong-Feng, Li Jian-Xing. Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction[J]. Matter and Radiation at Extremes, 2020, 5(5): 054402. doi: 10.1063/5.0007734

Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction

doi: 10.1063/5.0007734
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jianxing@xjtu.edu.cn
  • Received Date: 2020-03-16
  • Accepted Date: 2020-07-12
  • Available Online: 2020-09-01
  • Publish Date: 2020-09-15
  • The generation of highly polarized high-energy brilliant γ-rays via laser–plasma interaction is investigated in the quantum radiation-reaction regime. We employ a quantum electrodynamics particle-in-cell code to describe spin-resolved electron dynamics semiclassically and photon emission and polarization quantum mechanically in the local constant field approximation. As an ultrastrong linearly polarized (LP) laser pulse irradiates a near-critical-density (NCD) plasma followed by an ultrathin planar aluminum target, the electrons in the NCD plasma are first accelerated by the driving laser to ultrarelativistic energies and then collide head-on with the laser pulse reflected by the aluminum target, emitting brilliant LP γ-rays via nonlinear Compton scattering with an average polarization of about 70% and energy up to hundreds of MeV. Such γ-rays can be produced with currently achievable laser facilities and will find various applications in high-energy physics and laboratory astrophysics.
  • loading
  • [1]
    U. I. Uggerhøj, “The interaction of relativistic particles with strong crystalline fields,” Rev. Mod. Phys. 77, 1131–1171 (2005).10.1103/revmodphys.77.1131 doi: 10.1103/revmodphys.77.1131
    [2]
    G. Moortgat-Pick, T. Abe, G. Alexander et al., “Polarized positrons and electrons at the linear collider,” Phys. Rep. 460, 131–243 (2008).10.1016/j.physrep.2007.12.003 doi: 10.1016/j.physrep.2007.12.003
    [3]
    C. Bœhm, C. Degrande, O. Mattelaer, and A. C. Vincent, “Circular polarisation: A new probe of dark matter and neutrinos in the sky,” J. Cosmol. Astropart. Phys. 2017, 043.10.1088/1475-7516/2017/05/043 doi: 10.1088/1475-7516/2017/05/043
    [4]
    P. Laurent, J. Rodriguez, J. Wilms, M. Cadolle Bel, K. Pottschmidt, and V. Grinberg, “Polarized gamma-ray emission from the galactic black hole cygnus X-1,” Science 332, 438–439 (2011).10.1126/science.1200848 doi: 10.1126/science.1200848
    [5]
    J. Speth and A. van der Woude, “Giant resonances in nuclei,” Rep. Prog. Phys. 44, 719–786 (1981).10.1088/0034-4885/44/7/002 doi: 10.1088/0034-4885/44/7/002
    [6]
    Z. Akbar, P. Roy, S. Park et al., “Measurement of the helicity asymmetry e in ω → π+π−π0 photoproduction,” Phys. Rev. C 96, 065209 (2017).10.1103/PhysRevC.96.065209 doi: 10.1103/PhysRevC.96.065209
    [7]
    B. King and N. Elkina, “Vacuum birefringence in high-energy laser-electron collisions,” Phys. Rev. A 94, 062102 (2016).10.1103/physreva.94.062102 doi: 10.1103/physreva.94.062102
    [8]
    A. Ilderton and M. Marklund, “Prospects for studying vacuum polarisation using dipole and synchrotron radiation,” J. Plasma Phys. 82, 655820201 (2016).10.1017/s0022377816000192 doi: 10.1017/s0022377816000192
    [9]
    S. Ataman, M. Cuciuc, L. D’Alessi, L. Neagu, M. Rosu, K. Seto, O. Tesileanu, Y. Xu, and M. Zeng, “Experiments with combined laser and gamma beams at ELI-NP,” AIP Conf. Proc. 1852, 070002 (2017).10.1063/1.4984872 doi: 10.1063/1.4984872
    [10]
    Y. Nakamiya and K. Homma, “Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale,” Phys. Rev. D 96, 053002 (2017).10.1103/physrevd.96.053002 doi: 10.1103/physrevd.96.053002
    [11]
    S. Bragin, S. Meuren, C. H. Keitel, and A. Di Piazza, “High-energy vacuum birefringence and dichroism in an ultrastrong laser field,” Phys. Rev. Lett. 119, 250403 (2017).10.1103/physrevlett.119.250403 doi: 10.1103/physrevlett.119.250403
    [12]
    H. Olsen and L. C. Maximon, “Photon and electron polarization in high-energy bremsstrahlung and pair production with screening,” Phys. Rev. 114, 887–904 (1959).10.1103/physrev.114.887 doi: 10.1103/physrev.114.887
    [13]
    D. Abbott et al. (PEPPo Collaboration), “Production of highly polarized positrons using polarized electrons at MeV energies,” Phys. Rev. Lett. 116, 214801 (2016).10.1103/PhysRevLett.116.214801 doi: 10.1103/PhysRevLett.116.214801
    [14]
    T. Omori, M. Fukuda, T. Hirose et al., “Efficient propagation of polarization from laser photons to positrons through Compton scattering and electron-positron pair creation,” Phys. Rev. Lett. 96, 114801 (2006).10.1103/physrevlett.96.114801 doi: 10.1103/physrevlett.96.114801
    [15]
    G. Alexander, J. Barley, Y. Batygin et al., “Observation of polarized positrons from an undulator-based source,” Phys. Rev. Lett. 100, 210801 (2008).10.1103/physrevlett.100.210801 doi: 10.1103/physrevlett.100.210801
    [16]
    V. Petrillo, A. Bacci, C. Curatolo et al., “Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering,” Phys. Rev. Spec. Top.--Accel. Beams 18, 110701 (2015).10.1103/physrevstab.18.110701 doi: 10.1103/physrevstab.18.110701
    [17]
    V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998).
    [18]
    D. Lohmann, J. Peise, J. Ahrens et al., “Linearly polarized photons at MAMI (Mainz),” Nucl. Instrum. Methods Phys. Res., Sect. A 343, 494–507 (1994).10.1016/0168-9002(94)90230-5 doi: 10.1016/0168-9002(94)90230-5
    [19]
    R. Carrigan and J. Ellison, Relativistic Channeling (Plenum, New York, 1987).
    [20]
    V. M. Biryukov, Y. A. Chesnokov, and V. I. Kotov, Crystal Channeling and its Application at High Energy Accelerators (Springer, Berlin, 1997).
    [21]
    J. W. Yoon, C. Jeon, J. Shin, S. K. Lee, H. W. Lee, I. W. Choi, H. T. Kim, J. H. Sung, and C. H. Nam, “Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser,” Opt. Express 27, 20412–20420 (2019).10.1364/oe.27.020412 doi: 10.1364/oe.27.020412
    [22]
    C. N. Danson, C. Haefner, J. Bromage et al., “Petawatt and exsawatt class lasers worldwide,” High Power Laser Sci. Eng. 7, e54 (2019).10.1017/hpl.2019.36 doi: 10.1017/hpl.2019.36
    [23]
    S. Gales, K. A. Tanaka, D. L. Balabanski et al., “The extreme light infrastructure–nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).10.1088/1361-6633/aacfe8 doi: 10.1088/1361-6633/aacfe8
    [24]
    [25]
    [26]
    [27]
    [28]
    A. Negoita, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/revmodphys.84.1177 doi: 10.1103/revmodphys.84.1177
    [29]
    T. G. Blackburn, “Radiation reaction in electron-beam interactions with high-intensity lasers,” Rev. Mod. Plasma Phys. 4, 5 (2020).10.1007/s41614-020-0042-0 doi: 10.1007/s41614-020-0042-0
    [30]
    D. Del Sorbo, D. Seipt, T. G. Blackburn, A. G. R. Thomas, C. D. Murphy, J. G. Kirk, and C. P. Ridgers, “Spin polarization of electrons by ultraintense lasers,” Phys. Rev. A 96, 043407 (2017).10.1103/physreva.96.043407 doi: 10.1103/physreva.96.043407
    [31]
    D. Del Sorbo, D. Seipt, A. G. R. Thomas, and C. P. Ridgers, “Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers,” Plasma Phys. Controlled Fusion 60, 064003 (2018).10.1088/1361-6587/aab979 doi: 10.1088/1361-6587/aab979
    [32]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Theory of radiative electron polarization in strong laser fields,” Phys. Rev. A 98, 023417 (2018).10.1103/physreva.98.023417 doi: 10.1103/physreva.98.023417
    [33]
    D. Seipt, D. Del Sorbo, C. P. Ridgers, and A. G. R. Thomas, “Ultrafast polarization of an electron beam in an intense bichromatic laser field,” Phys. Rev. A 100, 061402(R) (2019).10.1103/physreva.100.061402 doi: 10.1103/physreva.100.061402
    [34]
    Y.-F. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse,” Phys. Rev. Lett. 122, 154801 (2019).10.1103/physrevlett.122.154801 doi: 10.1103/physrevlett.122.154801
    [35]
    H.-H. Song, W.-M. Wang, J.-X. Li, Y.-F. Li, and Y.-T. Li, “Spin-polarization effects of an ultrarelativistic electron beam in an ultraintense two-color laser pulse,” Phys. Rev. A 100, 033407 (2019).10.1103/physreva.100.033407 doi: 10.1103/physreva.100.033407
    [36]
    Y.-F. Li, R.-T. Guo, R. Shaisultanov, K. Z. Hatsagortsyan, and J.-X. Li, “Electron polarimetry with nonlinear Compton scattering,” Phys. Rev. Appl. 12, 014047 (2019).10.1103/physrevapplied.12.014047 doi: 10.1103/physrevapplied.12.014047
    [37]
    Y.-Y. Chen, P.-L. He, R. Shaisultanov, K. Z. Hatsagortsyan, and C. H. Keitel, “Polarized positron beams via intense two-color laser pulses,” Phys. Rev. Lett. 123, 174801 (2019).10.1103/physrevlett.123.174801 doi: 10.1103/physrevlett.123.174801
    [38]
    F. Wan, R. Shaisultanov, Y.-F. Li, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams,” Phys. Lett. B 800, 135120 (2020).10.1016/j.physletb.2019.135120 doi: 10.1016/j.physletb.2019.135120
    [39]
    D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave,” Eur. Phys. J. C 36, 127–145 (2004).10.1140/epjc/s2004-01861-x doi: 10.1140/epjc/s2004-01861-x
    [40]
    B. King, N. Elkina, and H. Ruhl, “Photon polarization in electron-seeded pair-creation cascades,” Phys. Rev. A 87, 042117 (2013).10.1103/physreva.87.042117 doi: 10.1103/physreva.87.042117
    [41]
    Y.-F. Li, R. Shaisultanov, Y.-Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, “Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction,” Phys. Rev. Lett. 124, 014801 (2020).10.1103/physrevlett.124.014801 doi: 10.1103/physrevlett.124.014801
    [42]
    [43]
    K. Kawase, M. Kando, T. Hayakawa et al., “Sub-MeV tunably polarized X-ray production with laser Thomson backscattering,” Rev. Sci. Instrum. 79, 053302 (2008).10.1063/1.2931010 doi: 10.1063/1.2931010
    [44]
    G.-P. An, Y.-L. Chi, Y.-L. Dang et al., “High energy and high brightness laser Compton backscattering gamma-ray source at IHEP,” Matter Radiat. Extremes 3, 219–226 (2018).10.1016/j.mre.2018.01.005 doi: 10.1016/j.mre.2018.01.005
    [45]
    [46]
    [47]
    G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087–1091 (1934).10.1103/physrev.46.1087 doi: 10.1103/physrev.46.1087
    [48]
    H. R. Reiss, “Absorption of light by light,” J. Math. Phys. 3, 59–67 (1962).10.1063/1.1703787 doi: 10.1063/1.1703787
    [49]
    V. I. Ritus, “Quantum effects of the interaction of elementary particles with an intense electromagnetic field,” J. Sov. Laser Res. 6, 497 (1985).10.1007/bf01120220 doi: 10.1007/bf01120220
    [50]
    C. Bula, K. T. McDonald, E. J. Prebys et al., “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116–3119 (1996).10.1103/physrevlett.76.3116 doi: 10.1103/physrevlett.76.3116
    [51]
    L. S. Brown and T. W. B. Kibble, “Interaction of intense laser beams with electrons,” Phys. Rev. 133, A705–A719 (1964).10.1103/physrev.133.a705 doi: 10.1103/physrev.133.a705
    [52]
    A. I. Nikishov and V. I. Ritus, “Quantum processes in the field of a plane electromagnetic wave and in a constant field,” Sov. Phys. JETP 19, 529 (1964) [Zh. Eksp. Teor. Fiz. 46, 776 (1964)].
    [53]
    J. W. Motz, H. A. Olsen, and H. W. Koch, “Pair production by photons,” Rev. Mod. Phys. 41, 581–639 (1969).10.1103/revmodphys.41.581 doi: 10.1103/revmodphys.41.581
    [54]
    D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, “Complete description of polarization effects in e+e− pair production by a photon in the field of a strong laser wave,” Eur. Phys. J. C 40, 27 (2005).10.1140/epjc/s2005-02125-1 doi: 10.1140/epjc/s2005-02125-1
    [55]
    K. T. Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308 (2012).10.1038/nphoton.2012.82 doi: 10.1038/nphoton.2012.82
    [56]
    S. Chen, N. D. Powers, I. Ghebregziabher et al., “MeV-energy x rays from inverse Compton scattering with laser-wakefield accelerated electrons,” Phys. Rev. Lett. 110, 155003 (2013).10.1103/physrevlett.110.155003 doi: 10.1103/physrevlett.110.155003
    [57]
    G. Sarri, D. J. Corvan, W. Schumaker et al., “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).10.1103/physrevlett.113.224801 doi: 10.1103/physrevlett.113.224801
    [58]
    W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and D. Umstadter, “High-order multiphoton Thomson scattering,” Nat. Photonics 11, 514–520 (2017).10.1038/nphoton.2017.100 doi: 10.1038/nphoton.2017.100
    [59]
    Y. Glinec, J. Faure, L. L. Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, “High-resolution γ-ray radiography produced by a laser-plasma driven electron source,” Phys. Rev. Lett. 94, 025003 (2005).10.1103/physrevlett.94.025003 doi: 10.1103/physrevlett.94.025003
    [60]
    A. Giulietti, N. Bourgeois, T. Ceccotti et al., “Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses,” Phys. Rev. Lett. 101, 105002 (2008).10.1103/physrevlett.101.105002 doi: 10.1103/physrevlett.101.105002
    [61]
    D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/physrevlett.116.185003 doi: 10.1103/physrevlett.116.185003
    [62]
    A. Benedetti, M. Tamburini, and C. H. Keitel, “Giant collimated gamma-ray flashes,” Nat. Photonics 12, 319 (2018).10.1038/s41566-018-0139-y doi: 10.1038/s41566-018-0139-y
    [63]
    H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He, “Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction,” Sci. Rep. 7, 45031 (2017).10.1038/srep45031 doi: 10.1038/srep45031
    [64]
    T.-P. Yu, A. Pukhov, Z.-M. Sheng, F. Liu, and G. Shvets, “Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target,” Phys. Rev. Lett. 110, 045001 (2013).10.1103/physrevlett.110.045001 doi: 10.1103/physrevlett.110.045001
    [65]
    W.-M. Wang, Z.-M. Sheng, P. Gibbon, L.-M. Chen, Y.-T. Li, and J. Zhang, “Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime,” Proc. Natl. Acad. Sci. U. S. A. 115, 9911 (2018).10.1073/pnas.1809649115 doi: 10.1073/pnas.1809649115
    [66]
    X.-L. Zhu, Y. Yin, T.-P. Yu, F.-Q. Shao, Z.-Y. Ge, W.-Q. Wang, and J.-J. Liu, “Enhanced electron trapping and γ-ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).10.1088/1367-2630/17/5/053039 doi: 10.1088/1367-2630/17/5/053039
    [67]
    X.-L. Zhu, M. Chen, T.-P. Yu, S.-M. Weng, L.-X. Hu, P. McKenna, and Z.-M. Sheng, “Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets,” Appl. Phys. Lett. 112, 174102 (2018).10.1063/1.5028555 doi: 10.1063/1.5028555
    [68]
    Y.-J. Gu, O. Klimo, S. V. Bulanov, and S. Weber, “Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses,” Commun. Phys. 1, 93 (2018).10.1038/s42005-018-0095-3 doi: 10.1038/s42005-018-0095-3
    [69]
    Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4, 064403 (2019).10.1063/1.5098978 doi: 10.1063/1.5098978
    [70]
    C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, “Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids,” Phys. Rev. Lett. 108, 165006 (2012).10.1103/physrevlett.108.165006 doi: 10.1103/physrevlett.108.165006
    [71]
    T. D. Arber, K. Bennett, C. S. Brady et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001 doi: 10.1088/0741-3335/57/11/113001
    [72]
    A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, “Implementing nonlinear Compton scattering beyond the local-constant-field approximation,” Phys. Rev. A 98, 012134 (2018).10.1103/physreva.98.012134 doi: 10.1103/physreva.98.012134
    [73]
    A. Ilderton, “Note on the conjectured breakdown of QED perturbation theory in strong fields,” Phys. Rev. D 99, 085002 (2019).10.1103/physrevd.99.085002 doi: 10.1103/physrevd.99.085002
    [74]
    A. Di Piazza, M. Tamburini, S. Meuren, and C. H. Keitel, “Improved local-constant-field approximation for strong-field QED codes,” Phys. Rev. A 99, 022125 (2019).10.1103/physreva.99.022125 doi: 10.1103/physreva.99.022125
    [75]
    J. Koga, T. Z. Esirkepov, and S. V. Bulanov, “Nonlinear Thomson scattering in the strong radiation damping regime,” Phys. Plasmas 12, 093106 (2005).10.1063/1.2013067 doi: 10.1063/1.2013067
    [76]
    V. N. Baier, V. M. Katkov, and V. S. Fadin, Radiation from Relativistic Electrons (Atomizdat, Moscow, 1973).
    [77]
    W. H. McMaster, “Matrix representation of polarization,” Rev. Mod. Phys. 33, 8–28 (1961).10.1103/revmodphys.33.8 doi: 10.1103/revmodphys.33.8
    [78]
    L. H. Thomas, “The motion of the spinning electron,” Nature 117, 514 (1926).10.1038/117514a0 doi: 10.1038/117514a0
    [79]
    L. H. Thomas, “The kinematics of an electron with an axis,” Philos. Mag. 3, 1–22 (1927).10.1080/14786440108564170 doi: 10.1080/14786440108564170
    [80]
    V. Bargmann, L. Michel, and V. L. Telegdi, “Precession of the polarization of particles moving in a homogeneous electromagnetic field,” Phys. Rev. Lett. 2, 435–436 (1959).10.1103/physrevlett.2.435 doi: 10.1103/physrevlett.2.435
    [81]
    [82]
    A. P. L. Robinson, P. Gibbon, M. Zepf, S. Kar, R. G. Evans, and C. Bellei, “Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses,” Plasma Phys. Controlled Fusion 51, 024004 (2009).10.1088/0741-3335/51/2/024004 doi: 10.1088/0741-3335/51/2/024004
    [83]
    T. Erber, “High-energy electromagnetic conversion processes in intense magnetic fields,” Rev. Mod. Phys. 38, 626–659 (1966).10.1103/revmodphys.38.626 doi: 10.1103/revmodphys.38.626
    [84]
    O. J. Pike, F. Mackenroth, E. G. Hill, and S. J. Rose, “A photon–photon collider in a vacuum hohlraum,” Nat. Photonics 8, 434–436 (2014).10.1038/nphoton.2014.95 doi: 10.1038/nphoton.2014.95
    [85]
    Y. Lu, H. Zhang, Y.-T. Hu, J. Zhao, L.-X. Hu, D.-B. Zou, X.-R. Xu, W.-Q. Wang, K. Liu, and T.-P. Yu, “Effect of laser polarization on the electron dynamics and photon emission in near-critical-density plasmas,” Plasma Phys. Controlled Fusion 62, 035002 (2020).10.1088/1361-6587/ab61e1 doi: 10.1088/1361-6587/ab61e1
    [86]
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1338) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return