Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 3
May  2020
Turn off MathJax
Article Contents
Ji Cheng, Li Bing, Liu Wenjun, Smith Jesse S., Björling Alexander, Majumdar Arnab, Luo Wei, Ahuja Rajeev, Shu Jinfu, Wang Junyue, Sinogeikin Stanislav, Meng Yue, Prakapenka Vitali B., Greenberg Eran, Xu Ruqing, Huang Xianrong, Ding Yang, Soldatov Alexander, Yang Wenge, Shen Guoyin, Mao Wendy L., Mao Ho-Kwang. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5(3): 038401. doi: 10.1063/5.0003288
Citation: Ji Cheng, Li Bing, Liu Wenjun, Smith Jesse S., Björling Alexander, Majumdar Arnab, Luo Wei, Ahuja Rajeev, Shu Jinfu, Wang Junyue, Sinogeikin Stanislav, Meng Yue, Prakapenka Vitali B., Greenberg Eran, Xu Ruqing, Huang Xianrong, Ding Yang, Soldatov Alexander, Yang Wenge, Shen Guoyin, Mao Wendy L., Mao Ho-Kwang. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5(3): 038401. doi: 10.1063/5.0003288

Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen

doi: 10.1063/5.0003288
More Information
  • Corresponding author: c)Author to whom correspondence should be addressed: maohk@hpstar.ac.cn
  • Received Date: 2020-01-31
  • Accepted Date: 2020-03-15
  • Available Online: 2020-05-01
  • Publish Date: 2020-05-15
  • Diamond anvil cell techniques have been improved to allow access to the multimegabar ultrahigh-pressure region for exploring novel phenomena in condensed matter. However, the only way to determine crystal structures of materials above 100 GPa, namely, X-ray diffraction (XRD), especially for low Z materials, remains nontrivial in the ultrahigh-pressure region, even with the availability of brilliant synchrotron X-ray sources. In this work, we perform a systematic study, choosing hydrogen (the lowest X-ray scatterer) as the subject, to understand how to better perform XRD measurements of low Z materials at multimegabar pressures. The techniques that we have developed have been proved to be effective in measuring the crystal structure of solid hydrogen up to 254 GPa at room temperature [C. Ji et al., Nature 573 , 558–562 (2019)]. We present our discoveries and experiences with regard to several aspects of this work, namely, diamond anvil selection, sample configuration for ultrahigh-pressure XRD studies, XRD diagnostics for low Z materials, and related issues in data interpretation and pressure calibration. We believe that these methods can be readily extended to other low Z materials and can pave the way for studying the crystal structure of hydrogen at higher pressures, eventually testing structural models of metallic hydrogen.
  • loading
  • [1]
    R. Jeanloz, “Physical chemistry at ultrahigh pressures and temperatures,” Annu. Rev. Phys. Chem. 40, 237–259 (1989).10.1146/annurev.pc.40.100189.001321 doi: 10.1146/annurev.pc.40.100189.001321
    [2]
    Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, and V. Prakapenka, “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786 doi: 10.1038/nature07786
    [3]
    C.-S. Yoo, “Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids,” Matter Radiat. Extremes 5, 018202 (2020).10.1063/1.5127897 doi: 10.1063/1.5127897
    [4]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/physrevlett.122.066001 doi: 10.1103/physrevlett.122.066001
    [5]
    D. Tomasino, M. Kim, J. Smith, and C.-S. Yoo, “Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with Colossal Raman intensity,” Phys. Rev. Lett. 113, 205502 (2014).10.1103/physrevlett.113.205502 doi: 10.1103/physrevlett.113.205502
    [6]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146 doi: 10.1038/nmat1146
    [7]
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures,” Phys. Rev. Lett. 122, 027001 (2019).10.1103/physrevlett.122.027001 doi: 10.1103/physrevlett.122.027001
    [8]
    A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8 doi: 10.1038/s41586-019-1201-8
    [9]
    C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys.: Condens. Matter 23, 053201 (2011).10.1088/0953-8984/23/5/053201 doi: 10.1088/0953-8984/23/5/053201
    [10]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116 doi: 10.1103/physrevb.82.094116
    [11]
    A. R. Oganov and C. W. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).10.1063/1.2210932 doi: 10.1063/1.2210932
    [12]
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964 doi: 10.1038/nature14964
    [13]
    B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu, Z. Cai, J. Chen, and H.-k. Mao, “Diamond anvil cell behavior up to 4 Mbar,” Proc. Natl. Acad. Sci. U. S. A. 115, 1713–1717 (2018).10.1073/pnas.1721425115 doi: 10.1073/pnas.1721425115
    [14]
    Z. Jenei, E. F. O’Bannon, S. T. Weir, H. Cynn, M. J. Lipp, and W. J. Evans, “Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar,” Nat. Commun. 9, 3563 (2018).10.1038/s41467-018-06071-x doi: 10.1038/s41467-018-06071-x
    [15]
    A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, and M. Mezouar, “Toroidal diamond anvil cell for detailed measurements under extreme static pressures,” Nat. Commun. 9, 2913 (2018).10.1038/s41467-018-05294-2 doi: 10.1038/s41467-018-05294-2
    [16]
    L. Dubrovinsky, N. Dubrovinskaia, V. B. Prakapenka, and A. M. Abakumov, “Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar,” Nat. Commun. 3, 1163 (2012).10.1038/ncomms2160 doi: 10.1038/ncomms2160
    [17]
    A. Dewaele and P. Loubeyre, “Pressurizing conditions in helium-pressure-transmitting medium,” High Pressure Res. 27, 419–429 (2007).10.1080/08957950701659627 doi: 10.1080/08957950701659627
    [18]
    H.-k. Mao and R. J. Hemley, “Ultrahigh-pressure transitions in solid hydrogen,” Rev. Mod. Phys. 66, 671–692 (1994).10.1103/revmodphys.66.671 doi: 10.1103/revmodphys.66.671
    [19]
    I. F. Silvera and R. J. Wijngaarden, “New low-temperature phase of molecular deuterium at ultrahigh pressure,” Phys. Rev. Lett. 47, 39 (1981).10.1103/physrevlett.47.39 doi: 10.1103/physrevlett.47.39
    [20]
    X. D. Liu, R. T. Howie, H. C. Zhang, X. J. Chen, and E. Gregoryanz, “High-pressure behavior of hydrogen and deuterium at low temperatures,” Phys. Rev. Lett. 119, 065301 (2017).10.1103/physrevlett.119.065301 doi: 10.1103/physrevlett.119.065301
    [21]
    R. J. Hemley and H. K. Mao, “Phase transition in solid molecular hydrogen at ultrahigh pressures,” Phys. Rev. Lett. 61, 857 (1988).10.1103/physrevlett.61.857 doi: 10.1103/physrevlett.61.857
    [22]
    R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and E. Gregoryanz, “Mixed molecular and atomic phase of dense hydrogen,” Phys. Rev. Lett. 108, 125501 (2012).10.1103/physrevlett.108.125501 doi: 10.1103/physrevlett.108.125501
    [23]
    M. I. Eremets and I. A. Troyan, “Conductive dense hydrogen,” Nat. Mater. 10, 927–931 (2011).10.1038/nmat3175 doi: 10.1038/nmat3175
    [24]
    R. T. Howie, T. Scheler, C. L. Guillaume, and E. Gregoryanz, “Proton tunneling in phase IV of hydrogen and deuterium,” Phys. Rev. B 86, 214104 (2012).10.1103/physrevb.86.214104 doi: 10.1103/physrevb.86.214104
    [25]
    P. Dalladay-Simpson, R. T. Howie, and E. Gregoryanz, “Evidence for a new phase of dense hydrogen above 325 gigapascals,” Nature 529, 63–67 (2016).10.1038/nature16164 doi: 10.1038/nature16164
    [26]
    P. Loubeyre, F. Occelli, and P. Dumas, “Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K,” Phys. Rev. B 87, 134101 (2013).10.1103/physrevb.87.134101 doi: 10.1103/physrevb.87.134101
    [27]
    R. T. Howie, E. Gregoryanz, and A. F. Goncharov, “Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures,” J. Appl. Phys. 114, 073505 (2013).10.1063/1.4818606 doi: 10.1063/1.4818606
    [28]
    A. F. Goncharov, I. Chuvashova, C. Ji, and H.-k. Mao, “Intermolecular coupling and fluxional behavior of hydrogen in phase IV,” Proc. Natl. Acad. Sci. U. S. A. 116, 25512–25515 (2019).10.1073/pnas.1916385116 doi: 10.1073/pnas.1916385116
    [29]
    P. Loubeyre, F. Occelli, and R. LeToullec, “Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen,” Nature 416, 613–617 (2002).10.1038/416613a doi: 10.1038/416613a
    [30]
    C.-s. Zha, Z. Liu, M. Ahart, R. Boehler, and R. J. Hemley, “High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy,” Phys. Rev. Lett. 110, 217402 (2013).10.1103/physrevlett.110.217402 doi: 10.1103/physrevlett.110.217402
    [31]
    M. I. Eremets, I. A. Troyan, P. Lerch, and A. Drozdov, “Infrared study of hydrogen up to 310 GPa at room temperature,” High Pressure Res. 33, 377–380 (2013).10.1080/08957959.2013.794229 doi: 10.1080/08957959.2013.794229
    [32]
    C. S. Zha, Z. Liu, and R. J. Hemley, “Synchrotron infrared measurements of dense hydrogen to 360 GPa,” Phys. Rev. Lett. 108, 146402 (2012).10.1103/physrevlett.108.146402 doi: 10.1103/physrevlett.108.146402
    [33]
    P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631–635 (2020).10.1038/s41586-019-1927-3 doi: 10.1038/s41586-019-1927-3
    [34]
    C. J. Pickard and R. J. Needs, “Structure of phase III of solid hydrogen,” Nat. Phys. 3, 473–476 (2007).10.1038/nphys625 doi: 10.1038/nphys625
    [35]
    H. Liu, L. Zhu, W. Cui, and Y. Ma, “Room-temperature structures of solid hydrogen at high pressures,” J. Chem. Phys. 137, 074501 (2012).10.1063/1.4745186 doi: 10.1063/1.4745186
    [36]
    C. J. Pickard, M. Martinez-Canales, and R. J. Needs, “Density functional theory study of phase IV of solid hydrogen,” Phys. Rev. B 85, 214114 (2012).10.1103/physrevb.85.214114 doi: 10.1103/physrevb.85.214114
    [37]
    H. Liu and Y. Ma, “Proton or deuteron transfer in phase IV of solid hydrogen and deuterium,” Phys. Rev. Lett. 110, 025903 (2013).10.1103/physrevlett.110.025903 doi: 10.1103/physrevlett.110.025903
    [38]
    B. Monserrat, N. D. Drummond, P. Dalladay-Simpson, R. T. Howie, P. Lopez Rios, E. Gregoryanz, C. J. Pickard, and R. J. Needs, “Structure and metallicity of phase V of hydrogen,” Phys. Rev. Lett. 120, 255701 (2018).10.1103/physrevlett.120.255701 doi: 10.1103/physrevlett.120.255701
    [39]
    R. M. Hazen, H. K. Mao, L. W. Finger, and R. J. Hemley, “Single-crystal x-ray diffraction of n-H2 at high pressure,” Phys. Rev. B 36, 3944–3947 (1987).10.1103/physrevb.36.3944 doi: 10.1103/physrevb.36.3944
    [40]
    H. K. Mao, A. P. Jephcoat, R. J. Hemley, L. W. Finger, C. S. Zha, R. M. Hazen, and D. E. Cox, “Synchrotron x-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals,” Science 239, 1131–1134 (1988).10.1126/science.239.4844.1131 doi: 10.1126/science.239.4844.1131
    [41]
    P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K. Mao, and L. W. Finger, “X-ray diffraction and equation of state of hydrogen at megabar pressures,” Nature 383, 702–704 (1996).10.1038/383702a0 doi: 10.1038/383702a0
    [42]
    Y. Akahama, M. Nishimura, H. Kawamura, N. Hirao, Y. Ohishi, and K. Takemura, “Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa,” Phys. Rev. B 82, 060101 (2010).10.1103/physrevb.82.060101 doi: 10.1103/physrevb.82.060101
    [43]
    Y. Akahama, Y. Mizuki, S. Nakano, N. Hirao, and Y. Ohishi, “Raman scattering and X-ray diffraction studies on phase III of solid hydrogen,” J. Phys.: Conf. Ser. 950, 042060 (2017).10.1088/1742-6596/950/4/042060 doi: 10.1088/1742-6596/950/4/042060
    [44]
    C. Ji, B. Li, W. Liu, J. S. Smith, A. Majumdar, W. Luo, R. Ahuja, J. Shu, J. Wang, S. Sinogeikin, Y. Meng, V. B. Prakapenka, E. Greenberg, R. Xu, X. Huang, W. Yang, G. Shen, W. L. Mao, and H.-K. Mao, “Ultrahigh-pressure isostructural electronic transitions in hydrogen,” Nature 573, 558–562 (2019).10.1038/s41586-019-1565-9 doi: 10.1038/s41586-019-1565-9
    [45]
    R. Boehler and K. De Hantsetters, “New anvil designs in diamond-cells,” High Pressure Res. 24, 391–396 (2004).10.1080/08957950412331323924 doi: 10.1080/08957950412331323924
    [46]
    R. Hrubiak, S. Sinogeikin, E. Rod, and G. Shen, “The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team,” Rev. Sci. Instrum. 86, 072202 (2015).10.1063/1.4926889 doi: 10.1063/1.4926889
    [47]
    O. L. Anderson, D. G. Isaak, and S. Yamamoto, “Anharmonicity and the equation of state for gold,” J. Appl. Phys. 65, 1534–1543 (1989).10.1063/1.342969 doi: 10.1063/1.342969
    [48]
    H. K. Mao, J. Xu, and P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions,” J. Geophys. Res. 91, 4673–4676 (1986).10.1029/jb091ib05p04673 doi: 10.1029/jb091ib05p04673
    [49]
    N. Hirao, S. I. Kawaguchi, K. Hirose, K. Shimizu, E. Ohtani, and Y. Ohishi, “New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8,” Matter Radiat. Extremes 5, 018403 (2020).10.1063/1.5126038 doi: 10.1063/1.5126038
    [50]
    C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Pressure Res. 35, 223–230 (2015).10.1080/08957959.2015.1059835 doi: 10.1080/08957959.2015.1059835
    [51]
    M. Wojdyr, “Fityk: A general-purpose peak fitting program,” J. Appl. Crystallogr. 43, 1126–1128 (2010).10.1107/s0021889810030499 doi: 10.1107/s0021889810030499
    [52]
    J. Gonzalez-Platas, M. Alvaro, F. Nestola, and R. Angel, “EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching,” J. Appl. Crystallogr. 49, 1377–1382 (2016).10.1107/s1600576716008050 doi: 10.1107/s1600576716008050
    [53]
    R. Hrubiak, J. S. Smith, and G. Shen, “Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments,” Rev. Sci. Instrum. 90, 025109 (2019).10.1063/1.5057518 doi: 10.1063/1.5057518
    [54]
    H. K. Mao, P. M. Bell, K. J. Dunn, R. M. Chrenko, and R. C. DeVries, “Absolute pressure measurements and analysis of diamonds subjected to maximum static pressures of 1.3-1.7 Mbar,” Rev. Sci. Instrum. 50, 1002–1009 (1979).10.1063/1.1135966 doi: 10.1063/1.1135966
    [55]
    X. R. Huang, M. Dudley, W. M. Vetter, W. Huang, W. Si, and C. H. Carter, Jr., “Superscrew dislocation contrast on synchrotron white-beam topographs: An accurate description of the direct dislocation image,” J. Appl. Cryst. 32, 516–524 (1999).10.1107/s0021889899002939 doi: 10.1107/s0021889899002939
    [56]
    X. Huang and A. T. Macrander, AIP Conf. Proc. 1234, 191 (2010).10.1063/1.3463170 doi: 10.1063/1.3463170
    [57]
    Y. V. Shvyd’ko, S. Stoupin, A. Cunsolo, A. H. Said, and X. Huang, “High-reflectivity high-resolution X-ray crystal optics with diamonds,” Nat. Phys. 6, 196–199 (2010).10.1038/nphys1506 doi: 10.1038/nphys1506
    [58]
    A. Dewaele, P. Loubeyre, R. André, and J. Härtwig, “An x-ray topographic study of diamond anvils: Correlation between defects and helium diffusion,” J. Appl. Phys. 99, 104906 (2006).10.1063/1.2197265 doi: 10.1063/1.2197265
    [59]
    H. K. Mao and R. J. Hemley, “Optical transitions in diamond at ultrahigh pressures,” Nature 351, 721–724 (1991).10.1038/351721a0 doi: 10.1038/351721a0
    [60]
    R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017).10.1126/science.aal1579 doi: 10.1126/science.aal1579
    [61]
    L. Wang, Y. Ding, W. Yang, W. Liu, Z. Cai, J. Kung, J. Shu, R. J. Hemley, W. L. Mao, and H.-k. Mao, “Nanoprobe measurements of materials at megabar pressures,” Proc. Natl. Acad. Sci. U. S. A. 107, 6140–6145 (2010).10.1073/pnas.1001141107 doi: 10.1073/pnas.1001141107
    [62]
    G. J. Ackland and J. S. Loveday, “Structures of solid hydrogen at 300 K,” Phys. Rev. B 101, 094104 (2020)10.1103/PhysRevB.101.094104. doi: 10.1103/PhysRevB.101.094104
    [63]
    [64]
    K. Yaoita, Y. Katayama, K. Tsuji, T. Kikegawa, and O. Shimomura, “Angle-dispersive diffraction measurement system for high-pressure experiments using a multichannel collimator,” Rev. Sci. Instrum. 68, 2106–2110 (1997).10.1063/1.1148103 doi: 10.1063/1.1148103
    [65]
    M. Mezouar, P. Faure, W. Crichton, N. Rambert, B. Sitaud, S. Bauchau, and G. Blattmann, “Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures,” Rev. Sci. Instrum. 73, 3570–3574 (2002).10.1063/1.1505104 doi: 10.1063/1.1505104
    [66]
    G. Weck, G. Garbarino, S. Ninet, D. Spaulding, F. Datchi, P. Loubeyre, and M. Mezouar, “Use of a multichannel collimator for structural investigation of low-Z dense liquids in a diamond anvil cell: Validation on fluid H2 up to 5 GPa,” Rev. Sci. Instrum. 84, 063901 (2013).10.1063/1.4807753 doi: 10.1063/1.4807753
    [67]
    C. Prescher, V. B. Prakapenka, J. Stefanski, S. Jahn, L. B. Skinner, and Y. Wang, “Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures,” Proc. Natl. Acad. Sci. U. S. A. 114, 10041–10046 (2017).10.1073/pnas.1708882114 doi: 10.1073/pnas.1708882114
    [68]
    S. Speziale, C.-S. Zha, T. S. Duffy, R. J. Hemley, and H.-k. Mao, “Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state,” J. Geophys. Res. 106, 515–528 (2001).10.1029/2000jb900318 doi: 10.1029/2000jb900318
    [69]
    Y. Akahama and H. Kawamura, “Pressure calibration of diamond anvil Raman gauge to 410 GPa,” J. Phys.: Conf. Ser. 215, 012195 (2010).10.1088/1742-6596/215/1/012195 doi: 10.1088/1742-6596/215/1/012195
    [70]
    C. Ji, B. Li, W. Yang, and H. Mao, “Crystallographic studies of ultra-dense solid hydrogen,” Chin. J. High Pressure Phys. 34(2), 20101 (2020).10.11858/gywlxb.20200520 doi: 10.11858/gywlxb.20200520
    [71]
    M. Eriksson, J. F. van der Veen, and C. Quitmann, “Diffraction-limited storage rings: A window to the science of tomorrow,” J. Synchrotron Radiat. 21, 837–842 (2014).10.1107/s1600577514019286 doi: 10.1107/s1600577514019286
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (507) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return