Citation: | Martínez-Flores C., Cabrera-Trujillo R.. High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement[J]. Matter and Radiation at Extremes, 2020, 5(2): 024401. doi: 10.1063/1.5139099 |
[1] |
A. Michels, J. De Boer, and A. Bijl, “Remarks concerning molecural interaction and their influence on the polarisability,” Physica 4(10), 981–994 (1937).10.1016/s0031-8914(37)80196-2 doi: 10.1016/s0031-8914(37)80196-2
|
[2] |
Advances in Quantum Chemistry, edited by S. A. Cruz, J. Sabin, and E. Brandas (Elsevier, Amsterdam, 2009), Vol. 57.
|
[3] |
Advances in Quantum Chemistry, edited by S. A. Cruz, J. Sabin, and E. Brandas (Elsevier, Amsterdam, 2009), Vol. 58.
|
[4] |
Electronic Structure of Quantum Confined Atoms and Molecules, edited by K. D. Sen (Springer International Publishing, Switzerland, 2014).
|
[5] |
W. Jaskólski, “Confined many-electron systems,” Phys. Rep. 271(1), 1–66 (1996).10.1016/0370-1573(95)00070-4 doi: 10.1016/0370-1573(95)00070-4
|
[6] |
E. Ley-Koo, “Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings,” Rev. Mex. Fis. 64, 326–363 (2018).10.31349/revmexfis.64.326 doi: 10.31349/revmexfis.64.326
|
[7] |
G. McGinn, “Atomic and molecular calculations with the pseudopotential method. VII One-valence-electron photoionization cross sections,” J. Chem. Phys. 53(9), 3635–3640 (1970).10.1063/1.1674543 doi: 10.1063/1.1674543
|
[8] |
J. N. Bardsley, “Pseudopotential calculations of alkali interactions,” Chem. Phys. Lett. 7(5), 517–520 (1970).10.1016/0009-2614(70)80162-2 doi: 10.1016/0009-2614(70)80162-2
|
[9] |
P. G. Burke and W. D. Robb, “The r-matrix theory of atomic processes,” Adv. At. Mol. Phys. 11, 143–214 (1976).10.1016/s0065-2199(08)60030-5 doi: 10.1016/s0065-2199(08)60030-5
|
[10] |
G. Peach, H. E. Saraph, and M. J. Seaton, “Atomic data for opacity calculations. IX. The lithium isoelectronic sequence,” J. Phys. B: At., Mol. Opt. Phys. 21(22), 3669 (1988).10.1088/0953-4075/21/22/006 doi: 10.1088/0953-4075/21/22/006
|
[11] |
P. Schwerdtfeger, “The pseudopotential approximation in electronic structure theory,” ChemPhysChem 12(17), 3143–3155 (2011).10.1002/cphc.201100387 doi: 10.1002/cphc.201100387
|
[12] |
C. Y. Lin and Y. K. Ho, “Photoionization of atoms encapsulated by cages using the power-exponential potential,” J. Phys. B: At., Mol. Opt. Phys. 45(14), 145001 (2012).10.1088/0953-4075/45/14/145001 doi: 10.1088/0953-4075/45/14/145001
|
[13] |
A. Sarsa, E. Buendía, and F. J. Gálvez, “Study of confined many electron atoms by means of the POEP method,” J. Phys. B: At., Mol. Opt. Phys. 47(18), 185002 (2014).10.1088/0953-4075/47/18/185002 doi: 10.1088/0953-4075/47/18/185002
|
[14] |
J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev. 128, 681–693 (1962).10.1103/physrev.128.681 doi: 10.1103/physrev.128.681
|
[15] |
E. V. Ludeña, “SCF Hartree-Fock calculations of ground state wavefunctions of compressed atoms,” J. Chem. Phys. 69(4), 1770–1775 (1978).10.1063/1.436710 doi: 10.1063/1.436710
|
[16] |
J. C. Slater, “A simplification of the Hartree-Fock method,” Phys. Rev. 81, 385–390 (1951).10.1103/physrev.81.385 doi: 10.1103/physrev.81.385
|
[17] |
A. Zangwill, “A half century of density functional theory,” Phys. Today 68(7), 34–39 (2015).10.1063/pt.3.2846 doi: 10.1063/pt.3.2846
|
[18] |
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st ed. (Dover Publications Inc., New York, 1996).
|
[19] |
M. S. Pindzola, “Excitation and charge transfer in proton-lithium collisions at 5–15 kev,” Phys. Rev. A 60, 3764–3768 (1999).10.1103/physreva.60.3764 doi: 10.1103/physreva.60.3764
|
[20] |
M. Miyasita, K. Higuchi, and M. Higuchi, “An alternative scheme for calculating the unrestricted Hartree–Fock equation: Application to the boron and neon atoms,” Physica B 407(14), 2758–2762 (2012).10.1016/j.physb.2012.04.022 doi: 10.1016/j.physb.2012.04.022
|
[21] |
R. Cabrera-Trujillo and S. A. Cruz, “Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen,” Phys. Rev. A 87, 012502 (2013).10.1103/physreva.87.012502 doi: 10.1103/physreva.87.012502
|
[22] |
S. Koonin and D. C. Meredith, Computational Physics: Fortran Version (Westview Press, 1998).
|
[23] |
M. Inokuti, “Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited,” Rev. Mod. Phys. 43, 297–347 (1971).10.1103/revmodphys.43.297 doi: 10.1103/revmodphys.43.297
|
[24] |
H. Friedrich, Theoretical Atomic Physics, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 2006).
|
[25] |
H. A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 3rd ed. (Westview Press, Boulder, Colo, EE.UU., 1997).
|
[26] |
H. Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch materie,” Ann. Phys. 397(3), 325–400 (1930).10.1002/andp.19303970303 doi: 10.1002/andp.19303970303
|
[27] |
J. Oddershede and J. R. Sabin, “Orbital and whole-atom proton stopping power and shell corrections for atoms with z < 36,” At. Data Nucl. Data Tables 31(2), 275–297 (1984).10.1016/0092-640x(84)90024-x doi: 10.1016/0092-640x(84)90024-x
|
[28] |
C. Froese-Fischer, “A general multi-configuration Hartree-Fock program,” Comput. Phys. Commun. 14(1-2), 145–153 (1978).10.1016/0010-4655(78)90057-7 doi: 10.1016/0010-4655(78)90057-7
|
[29] |
A. D. Sañu-Ginarte, E. M. Guillén-Romero, L. Ferrer-Galindo, L. A. Ferrer-Moreno, R. Betancourt-Riera, and R. Riera, “New approach to obtain the analytical expression of the energy functional in free or confined atoms,” Results Phys. 13, 102261 (2019).10.1016/j.rinp.2019.102261 doi: 10.1016/j.rinp.2019.102261
|
[30] |
A. W. Weiss, “The calculation of atomic oscillator strengths: The lithium atom revisited,” Can. J. Chem. 70(2), 456–463 (1992).10.1139/v92-066 doi: 10.1139/v92-066
|
[31] |
P. Schwerdtfeger and J. K. Nagle, “2018 Table of static dipole polarizabilities of the neutral elements in the periodic table,” Mol. Phys. 117(9-12), 1200–1225 (2019).10.1080/00268976.2018.1535143 doi: 10.1080/00268976.2018.1535143
|
[32] |
L.-Y. Tang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy, “Dynamic dipole polarizabilities of the Li atom and the Be+ ion,” Phys. Rev. A 81, 042521 (2010).10.1103/physreva.81.042521 doi: 10.1103/physreva.81.042521
|
[33] |
A. W. Weiss, “Wave functions and oscillator strengths for the lithium isoelectronic sequence,” Astrophys. J. 138, 1262 (1963).10.1086/147722 doi: 10.1086/147722
|
[34] |
J. P. Connerade, V. K. Dolmatov, and P. A. Lakshmi, “The filling of shells in compressed atoms,” J. Phys. B: At., Mol. Opt. Phys. 33(2), 251 (2000).10.1088/0953-4075/33/2/310 doi: 10.1088/0953-4075/33/2/310
|
[35] |
J. P. Connerade and R. Semaoune, “Atomic compressibility and reversible insertion of atoms into solids,” J. Phys. B: At., Mol. Opt. Phys. 33(17), 3467–3484 (2000).10.1088/0953-4075/33/17/323 doi: 10.1088/0953-4075/33/17/323
|
[36] |
M. Rahm, R. Cammi, N. W. Ashcroft, and R. Hoffmann, “Squeezing all elements in the periodic table: Electron configuration and electronegativity of the atoms under compression,” J. Am. Chem. Soc. 141(26), 10253–10271 (2019).10.1021/jacs.9b02634 doi: 10.1021/jacs.9b02634
|
[37] |
C. Le Sech and A. Banerjee, “A variational approach to the dirichlet boundary condition: Application to confined H−, He and Li,” J. Phys. B: At., Mol. Opt. Phys. 44(10), 105003 (2011).10.1088/0953-4075/44/10/105003 doi: 10.1088/0953-4075/44/10/105003
|
[38] |
A. Sarsa and C. Le Sech, “Variational Monte Carlo method with Dirichlet boundary conditions: Application to the study of confined systems by impenetrable surfaces with different symmetries,” J. Chem. Theory Comput. 7(9), 2786–2794 (2011).10.1021/ct200284q doi: 10.1021/ct200284q
|
[39] |
J. P. Connerade, P. Kengkan, P. Anantha Lakshmi, and R. Semaoune, “Scaling laws for atomic compressibility,” J. Phys. B: At., Mol. Opt. Phys. 33(22), L847–L854 (2000).10.1088/0953-4075/33/22/101 doi: 10.1088/0953-4075/33/22/101
|
[40] |
N. A. Atari, “Piezoluminescence phenomenon,” Phys. Lett. A 90(1), 93–96 (1982).10.1016/0375-9601(82)90060-3 doi: 10.1016/0375-9601(82)90060-3
|
[41] |
S. Kamakura, N. Sakamoto, H. Ogawa, H. Tsuchida, and M. Inokuti, “Mean excitation energies for the stopping power of atoms and molecules evaluated from oscillator-strength spectra,” J. Appl. Phys. 100(6), 064905 (2006).10.1063/1.2345478 doi: 10.1063/1.2345478
|
[42] |
J. L. Dehmer, M. Inokuti, and R. P. Saxon, “Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row,” Phys. Rev. A 12, 102–121 (1975).10.1103/physreva.12.102 doi: 10.1103/physreva.12.102
|
[43] |
D. Y. Smith, M. Inokuti, W. Karstens, and E. Shiles, “Mean excitation energy for the stopping power of light elements,” Nucl. Instrum. Methods Phys. Res., Sect. B 250(1), 1–5 (2006), Part of special issue on Radiation Effects in Insulators.10.1016/j.nimb.2006.04.077 doi: 10.1016/j.nimb.2006.04.077
|