Citation: | Li Mei, Liu Tianbiao, Wang Yonggang, Yang Wenge, Lü Xujie. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201. doi: 10.1063/1.5133653 |
[1] |
D. Y. Park, H. R. Byun, H. Kim et al., “Enhanced stability of perovskite solar cells using organosilane-treated double polymer passivation layers,” J. Koraen Phys. Soc. 73, 1787–1793 (2018).10.3938/jkps.73.1787 doi: 10.3938/jkps.73.1787
|
[2] |
K. Akihiro, T. Kenjiro, S. Yasuo et al., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131, 6050–6051 (2009).10.1021/ja809598r doi: 10.1021/ja809598r
|
[3] |
E. Köhnen, M. Jošt, A. B. Morales-Vilches et al., “Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance,” Sustainable Energy Fuels 3, 1995–2005 (2019).10.1039/c9se00120d doi: 10.1039/c9se00120d
|
[4] |
L. Gao, F. Zhang, C. Xiao et al., “Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells,” Adv. Funct. Mater. 29, 1901652 (2019).10.1002/adfm.201901652 doi: 10.1002/adfm.201901652
|
[5] |
C. G. Bischak, A. B. Wong, E. Lin et al., “Tunable polaron distortions control the extent of halide demixing in lead halide perovskites,” J. Phys. Chem. Lett. 9, 3998–4005 (2018).10.1021/acs.jpclett.8b01512 doi: 10.1021/acs.jpclett.8b01512
|
[6] |
J. Zhu, Q. Di, X. Zhao et al., “Facile method for the controllable synthesis of CsxPbyBrz-based perovskites,” Inorg. Chem. 57, 6206–6209 (2018).10.1021/acs.inorgchem.8b00645 doi: 10.1021/acs.inorgchem.8b00645
|
[7] |
R. H. Friend, D. Di, S. Lilliu et al., “Perovskite LEDs,” Sci. Video Protocols 1, 1–5 (2019).10.32386/scivpro.000005 doi: 10.32386/scivpro.000005
|
[8] |
S. Yang, Z. Lin, J. Wang et al., “High color rendering index white-light emission from UV-driven LEDs based on single luminescent materials: Two-dimensional perovskites (C6H5C2H4NH3)2PbBrxCl4-x,” ACS Appl. Mater. Interfaces 10, 15980–15987 (2018).10.1021/acsami.8b00048 doi: 10.1021/acsami.8b00048
|
[9] |
C. Zuo, H. J. Bolink, H. Han et al., “Advances in perovskite solar cells,” Adv. Sci. 3, 1500324 (2016).10.1002/advs.201500324 doi: 10.1002/advs.201500324
|
[10] |
F. Giustino and H. J. Snaith, “Toward lead-free perovskite solar cells,” ACS Energy Lett. 1, 1233–1240 (2016).10.1021/acsenergylett.6b00499 doi: 10.1021/acsenergylett.6b00499
|
[11] |
Z. Ma, Z. Liu, S. Lu et al., “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).10.1038/s41467-018-06840-8 doi: 10.1038/s41467-018-06840-8
|
[12] |
P. Ščajev, R. Aleksiejūnas, S. Miasojedovas et al., “Two regimes of carrier diffusion in vapor-deposited lead-halide perovskites,” J. Phys. Chem. C 121, 21600–21609 (2017).10.1021/acs.jpcc.7b04179 doi: 10.1021/acs.jpcc.7b04179
|
[13] |
J. Liu and O. V. Prezhdo, “Chlorine doping reduces electron-hole recombination in lead iodide perovskites: Time-domain ab initio analysis,” J. Phys. Chem. Lett. 6, 4463–4469 (2015).10.1021/acs.jpclett.5b02355 doi: 10.1021/acs.jpclett.5b02355
|
[14] |
S. Sun, F. H. Isikgor, Z. Deng et al., “Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites,” ChemSusChem 10, 3740–3745 (2017).10.1002/cssc.201700991 doi: 10.1002/cssc.201700991
|
[15] |
Y. Zhao and K. Zhu, “Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications,” Chem. Soc. Rev. 45, 655–689 (2016).10.1039/c4cs00458b doi: 10.1039/c4cs00458b
|
[16] |
X. Wang, Y. Ling, Y.-C. Chiu et al., “Dynamic electronic junctions in organic–inorganic hybrid perovskites,” Nano Lett. 17, 4831–4839 (2017).10.1021/acs.nanolett.7b01665 doi: 10.1021/acs.nanolett.7b01665
|
[17] |
J. Breternitz and S. Schorr, “What defines a perovskite?,” Adv. Energy Mater. 8, 1802366 (2018).10.1002/aenm.201802366 doi: 10.1002/aenm.201802366
|
[18] |
G. Walters and E. H. Sargent, “Electro-optic response in germanium halide perovskites,” J. Phys. Chem. Lett. 9, 1018–1027 (2018).10.1021/acs.jpclett.7b03353 doi: 10.1021/acs.jpclett.7b03353
|
[19] |
G. Niu, X. Guo, and L. Wang, “Review of recent progress in chemical stability of perovskite solar cells,” J. Mater. Chem. A 3, 8970–8980 (2015).10.1039/c4ta04994b doi: 10.1039/c4ta04994b
|
[20] |
D. Ding, H. Li, J. Li et al., “Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials,” J. Mater. Chem. A 7, 540–548 (2019).10.1039/c8ta08868c doi: 10.1039/c8ta08868c
|
[21] |
Z. Fan, K. Sun, and J. Wang, “Perovskites for photovoltaics: A combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites,” J. Mater. Chem. A 3, 18809–18828 (2015).10.1039/c5ta04235f doi: 10.1039/c5ta04235f
|
[22] |
Y. Cao, G. Qi, C. Liu et al., “Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals,” J. Phys. Chem. C 122, 9332–9338 (2018).10.1021/acs.jpcc.8b01673 doi: 10.1021/acs.jpcc.8b01673
|
[23] |
H. Murasugi, S. Kumagai, H. Iguchi et al., “Organic-inorganic hybrid gold halide perovskites: Structural diversity through cation size,” Chem. Eur. J. 25, 9885–9891 (2019).10.1002/chem.201901288 doi: 10.1002/chem.201901288
|
[24] |
G. Volonakis, M. R. Filip, A. A. Haghighirad et al., “Lead-free halide double perovskites via heterovalent substitution of noble metals,” J. Phys. Chem. Lett. 7, 1254–1259 (2016).10.1021/acs.jpclett.6b00376 doi: 10.1021/acs.jpclett.6b00376
|
[25] |
I. García-Benito, C. Quarti, V. I. E. Queloz et al., “Fashioning fluorous organic spacers for tunable and stable layered hybrid perovskites,” Chem. Mater. 30, 8211–8220 (2018).10.1021/acs.chemmater.8b03377 doi: 10.1021/acs.chemmater.8b03377
|
[26] |
H. Lin, C. Zhou, Y. Tian et al., “Low-dimensional organometal halide perovskites,” ACS Energy Lett. 3, 54–62 (2017).10.1021/acsenergylett.7b00926 doi: 10.1021/acsenergylett.7b00926
|
[27] |
A. Jaffe, Y. Lin, and H. I. Karunadasa, “Halide perovskites under pressure: Accessing new properties through lattice compression,” ACS Energy Lett. 2, 1549–1555 (2017).10.1021/acsenergylett.7b00284 doi: 10.1021/acsenergylett.7b00284
|
[28] |
W. Yin, J. Yang, J. Kang et al., “Halide perovskite materials for solar cells: A theoretical review,” J. Mater. Chem. A 3, 8926–8942 (2015).10.1039/c4ta05033a doi: 10.1039/c4ta05033a
|
[29] |
M. Tan, S. Wang, F. Rao et al., “Pressures tuning the band gap of organic–inorganic trihalide perovskites (MAPbBr3): A first-principles study,” J. Electron. Mater. 47, 7204–7211 (2018).10.1007/s11664-018-6653-3 doi: 10.1007/s11664-018-6653-3
|
[30] |
H. Zhu, M. T. Trinh, J. Wang et al., “Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites,” Adv. Mater. 29, 1603072 (2017).10.1002/adma.201603072 doi: 10.1002/adma.201603072
|
[31] |
J. Gong, M. Yang, X. Ma et al., “Electron–rotor interaction in organic–inorganic lead iodide perovskites discovered by isotope effects,” J. Phys. Chem. Lett. 7, 2879–2887 (2016).10.1021/acs.jpclett.6b01199 doi: 10.1021/acs.jpclett.6b01199
|
[32] |
X. Lu, W. Yang, Q. Jia et al., “Pressure-induced dramatic changes in organic-inorganic halide perovskites,” Chem. Sci. 8, 6764–6776 (2017).10.1039/c7sc01845b doi: 10.1039/c7sc01845b
|
[33] |
X. Wu, M. T. Trinh, D. Niesner et al., “Trap states in lead iodide perovskites,” J. Am. Chem. Soc. 137, 2089–2096 (2015).10.1021/ja512833n doi: 10.1021/ja512833n
|
[34] |
I. C. Smith, M. D. Smith, A. Jaffe et al., “Between the sheets: Postsynthetic transformations in hybrid perovskites,” Chem. Mater. 29, 1868–1884 (2017).10.1021/acs.chemmater.6b05395 doi: 10.1021/acs.chemmater.6b05395
|
[35] |
K. Matsuishi, T. Suzuki, S. Onari et al., “Excitonic states of alkylammonium lead-iodide layered perovskite semiconductors under hydrostatic pressure to 25 GPa,” Phys. Status Solidi B 223, 177–182 (2001).10.1002/1521-3951(200101)223:1<177::aid-pssb177>3.0.co;2-j doi: 10.1002/1521-3951(200101)223:1<177::aid-pssb177>3.0.co;2-j
|
[36] |
I. Chung, J.-H. Song, J. Im et al., “CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions,” J. Am. Chem. Soc. 134, 8579–8587 (2012).10.1021/ja301539s doi: 10.1021/ja301539s
|
[37] |
X. Lu, Y. Wang, C. C. Stoumpos et al., “Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization,” Adv. Mater. 28, 8663–8668 (2016).10.1002/adma.201600771 doi: 10.1002/adma.201600771
|
[38] |
Y. Ying, X. Luo, and H. Huang, “Pressure-induced topological nontrivial phase and tunable optical properties in all-inorganic halide perovskites,” J. Phys. Chem. C 122, 17718–17725 (2018).10.1021/acs.jpcc.8b06712 doi: 10.1021/acs.jpcc.8b06712
|
[39] |
C. Zhou, H. Lin, Q. He et al., “Low dimensional metal halide perovskites and hybrids,” Mater. Sci. Eng. 137, 38–65 (2019).10.1016/j.mser.2018.12.001 doi: 10.1016/j.mser.2018.12.001
|
[40] |
L. Zhang, Y. Wang, J. Lv et al., “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5 doi: 10.1038/natrevmats.2017.5
|
[41] |
C. Pei and L. Wang, “Recent progress on high-pressure and high-temperature studies of fullerenes and related materials,” Matter Radiat. Extremes 4, 028201 (2019).10.1063/1.5086310 doi: 10.1063/1.5086310
|
[42] |
H.-K. Mao, B. Chen, J. Chen et al., “Recent advances in high-pressure science and technology,” Matter Radiat. Extremes 1, 59–75 (2016).10.1016/j.mre.2016.01.005 doi: 10.1016/j.mre.2016.01.005
|
[43] |
G. Xiao, Y. Cao, G. Qi et al., “Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals,” J. Am. Chem. Soc. 139, 10087–10094 (2017).10.1021/jacs.7b05260 doi: 10.1021/jacs.7b05260
|
[44] |
A. Nijamudheen and A. V. Akimov, “Criticality of symmetry in rational design of chalcogenide perovskites,” J. Phys. Chem. Lett. 9, 248–257 (2018).10.1021/acs.jpclett.7b02589 doi: 10.1021/acs.jpclett.7b02589
|
[45] |
P. Postorino and L. Malavasi, “Chemistry at high pressure: Tuning functional materials properties,” MRS Bull. 42, 718–723 (2017).10.1557/mrs.2017.214 doi: 10.1557/mrs.2017.214
|
[46] |
H.-k. Mao and R. J. Hemley, “Ultrahigh-pressure transitions in solid hydrogen,” Rev. Mod. Phys. 66, 671–692 (1994).10.1103/revmodphys.66.671 doi: 10.1103/revmodphys.66.671
|
[47] |
M. Szafrański and A. Katrusiak, “Photovoltaic hybrid perovskites under pressure,” J. Phys. Chem. Lett. 8, 2496–2506 (2017).10.1021/acs.jpclett.7b00520 doi: 10.1021/acs.jpclett.7b00520
|
[48] |
P. Postorinoa and L. Malavasi, “Pressure-induced effects in organic–inorganic hybrid perovskites,” J. Phys. Chem. Lett. 8, 2613–2622 (2017).10.1021/acs.jpclett.7b00347 doi: 10.1021/acs.jpclett.7b00347
|
[49] |
A. P. Drozdov, P. P. Kong, V. S. Minkov et al., “Superconductivity at 250 K in lanthanum hydride under high pressures,” Nature 569, 528–531 (2019).10.1038/s41586-019-1201-8 doi: 10.1038/s41586-019-1201-8
|
[50] |
Y. Xia, B. Yang, F. Jin et al., “Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure,” Nano Lett. 19, 2537–2542 (2019).10.1021/acs.nanolett.9b00258 doi: 10.1021/acs.nanolett.9b00258
|
[51] |
Z. Ma, F. Li, G. Qi et al., “Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure,” Nanoscale 11, 820–825 (2019).10.1039/c8nr05684f doi: 10.1039/c8nr05684f
|
[52] |
R. Fu, Y. Chen, X. Yong et al., “Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals,” Nanoscale 11, 17004–17009 (2019).10.1039/c9nr07030c doi: 10.1039/c9nr07030c
|
[53] |
A. P. Drozdov, M. I. Eremets, I. A. Troyan et al., “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature 525, 73–76 (2015).10.1038/nature14964 doi: 10.1038/nature14964
|
[54] |
Y. Wang, X. Lu, W. Yang et al., “Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite,” J. Am. Chem. Soc. 137, 11144–11149 (2015).10.1021/jacs.5b06346 doi: 10.1021/jacs.5b06346
|
[55] |
A. Jaffe, Y. Lin, W. L. Mao et al., “Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3,” J. Am. Chem. Soc. 139, 4330–4333 (2017).10.1021/jacs.7b01162 doi: 10.1021/jacs.7b01162
|
[56] |
P. Wang, J. Guan, D. T. K. Galeschuk et al., “Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite,” J. Phys. Chem. Lett. 8, 2119 (2017).10.1021/acs.jpclett.7b00665 doi: 10.1021/acs.jpclett.7b00665
|
[57] |
T. Yin, Y. Fang, W. K. Chong et al., “High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates,” Adv. Mater. 30, 1705017 (2018).10.1002/adma.201705017 doi: 10.1002/adma.201705017
|
[58] |
N. Onoda-Yamamuro, O. Yamamuro, T. Matsuo et al., “P-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals,” J. Phys. Chem. Solids 53, 277–281 (1992).10.1016/0022-3697(92)90056-j doi: 10.1016/0022-3697(92)90056-j
|
[59] |
S. Yun, Y. Qin, A. R. Uhl et al., “New-generation integrated devices based on dye-sensitized and perovskite solar cells,” Enegy Environ. Sci. 11, 476–526 (2018).10.1039/c7ee03165c doi: 10.1039/c7ee03165c
|
[60] |
D. Koushik, W. J. H. Verhees, Y. Kuang et al., “High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture,” Enegy Environ. Sci. 10, 91–100 (2017).10.1039/c6ee02687g doi: 10.1039/c6ee02687g
|
[61] |
M. E. Calvo, “Materials chemistry approaches to the control of the optical features of perovskite solar cells,” J. Mater. Chem. A 5, 20561–20578 (2017).10.1039/c7ta05666d doi: 10.1039/c7ta05666d
|
[62] |
N.-G. Park, M. Grätzel, T. Miyasaka et al., “Towards stable and commercially available perovskite solar cells,” Nat. Energy 1, 16152 (2016).10.1038/nenergy.2016.152 doi: 10.1038/nenergy.2016.152
|
[63] |
S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).10.1038/nnano.2015.90 doi: 10.1038/nnano.2015.90
|
[64] |
M. L. Petrus, J. Schlipf, C. Li et al., “Capturing the sun: A review of the challenges and perspectives of perovskite solar cells,” Adv. Energy Mater. 7, 1700264 (2017).10.1002/aenm.201700264 doi: 10.1002/aenm.201700264
|
[65] |
A. R. bin Mohd Yusoff and M. K. Nazeeruddin, “Low-dimensional perovskites: From synthesis to stability in perovskite solar cells,” Adv. Energy Mater. 8, 1702073 (2018).10.1002/aenm.201702073 doi: 10.1002/aenm.201702073
|
[66] |
I. P. Swainson, M. G. Tucker, D. J. Wilson et al., “Pressure response of an organic-inorganic perovskite: Methylammonium lead bromide,” Chem. Mater. 19, 2401–2405 (2007).10.1021/cm0621601 doi: 10.1021/cm0621601
|
[67] |
T. Baikie, Y. Fang, J. M. Kadro et al., “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications,” J. Mater. Chem. A 1, 5628–5641 (2013).10.1039/c3ta10518k doi: 10.1039/c3ta10518k
|
[68] |
F. Capitani, C. Marini, S. Caramazza et al., “Locking of methylammonium by pressure-enhanced H-bonding in (CH3NH3)PbBr3 hybrid perovskite,” J. Phys. Chem. Lett. 121, 28125–28131 (2017).10.1021/acs.jpcc.7b11461 doi: 10.1021/acs.jpcc.7b11461
|
[69] |
M. Ji, H. Wang, Y. Gong et al., “High pressure induced in situ solid-state phase transformation of nonepitaxial grown metal@semiconductor nanocrystals,” J. Phys. Chem. Lett. 9, 6544–6549 (2018).10.1021/acs.jpclett.8b03057 doi: 10.1021/acs.jpclett.8b03057
|
[70] |
H. Yan, T. Ou, H. Jiao et al., “Pressure dependence of mixed conduction and photo responsiveness in organolead tribromide perovskites,” J. Phys. Chem. Lett. 8, 2944–2950 (2017).10.1021/acs.jpclett.7b01022 doi: 10.1021/acs.jpclett.7b01022
|
[71] |
M. Szafranski and A. Katrusiak, “Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide,” J. Phys. Chem. Lett. 7, 3458–3466 (2016).10.1021/acs.jpclett.6b01648 doi: 10.1021/acs.jpclett.6b01648
|
[72] |
Y. Liang, X. Huang, Y. Huang et al., “New metallic ordered phase of perovskite CsPbI3 under pressure,” Adv. Sci. 6, 1900399 (2019).10.1002/advs.201900399 doi: 10.1002/advs.201900399
|
[73] |
C. Gao, R. Li, Y. Li et al., “Direct-indirect transition of pressurized 2D halide perovskite: Role of benzene ring stack ordering,” J. Phys. Chem. Lett. 10, 5687–5693 (2019).10.1021/acs.jpclett.9b02604 doi: 10.1021/acs.jpclett.9b02604
|
[74] |
Y. Chen, R. Fu, L. Wang et al., “Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure,” J. Mater. Chem. A 7, 6357–6362 (2019).10.1039/c8ta11992a doi: 10.1039/c8ta11992a
|
[75] |
C. Liu, Z. Li, L. Yang et al., “Optical behaviors of a micro-sized single crystal MAPbI3 plate under high pressure,” J. Phys. Chem. C 123, 30221–30227 (2019).10.1021/acs.jpcc.9b10416 doi: 10.1021/acs.jpcc.9b10416
|
[76] |
L. Zhang, L. Wu, K. Wang et al., “Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4,” Adv Sci 6, 1801628 (2019).10.1002/advs.201801628 doi: 10.1002/advs.201801628
|
[77] |
G. Liu, L. Kong, W. Yang et al., “Pressure engineering of photovoltaic perovskites,” Mater. Today 27, 91–106 (2019).10.1016/j.mattod.2019.02.016 doi: 10.1016/j.mattod.2019.02.016
|
[78] |
Y. Fu, H. Zhu, J. Chen et al., “Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties,” Nat. Rev. Mater. 4, 169–188 (2019).10.1038/s41578-019-0080-9 doi: 10.1038/s41578-019-0080-9
|
[79] |
M. C. Gelvez-Rueda, E. M. Hutter, D. H. Cao et al., “Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites,” J. Phys. Chem. Lett. 121, 26566–26574 (2017).10.1021/acs.jpcc.7b10705 doi: 10.1021/acs.jpcc.7b10705
|
[80] |
C. Zhou, H. Lin, S. Lee et al., “Organic–inorganic metal halide hybrids beyond perovskites,” Mater. Res. Lett. 6, 552–569 (2018).10.1080/21663831.2018.1500951 doi: 10.1080/21663831.2018.1500951
|
[81] |
T. Yin, B. Liu, J. Yan et al., “Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes,” J. Am. Chem. Soc. 141, 1235–1241 (2018).10.1021/jacs.8b07765 doi: 10.1021/jacs.8b07765
|
[82] |
L. Kong, G. Liu, J. Gong et al., “Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites,” Proc. Natl Acad. Sci. 113, 8910–8915 (2016).10.1073/pnas.1609030113 doi: 10.1073/pnas.1609030113
|
[83] |
Q. Li, Y. Wang, W. Pan et al., “High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite,” Angew. Chem., Int. Ed. 56, 15969–15973 (2017).10.1002/anie.201708684 doi: 10.1002/anie.201708684
|
[84] |
L. Zhang, Q. Zeng, and K. Wang, “Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3,” J. Phys. Chem. Lett. 8, 3752–3758 (2017).10.1021/acs.jpclett.7b01577 doi: 10.1021/acs.jpclett.7b01577
|
[85] |
Y. Shi, Z. Ma, D. Zhao et al., “Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites,” J. Am. Chem. Soc. 141, 6504–6508 (2019).10.1021/jacs.9b02568 doi: 10.1021/jacs.9b02568
|
[86] |
L. Wang, K. Wang, and B. Zou, “Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide,” J. Phys. Chem. Lett. 7, 2556–2562 (2016).10.1021/acs.jpclett.6b00999 doi: 10.1021/acs.jpclett.6b00999
|
[87] |
L. Wang, K. Wang, G. Xiao et al., “Pressure-induced structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride,” J. Phys. Chem. Lett. 7, 5273–5279 (2016).10.1021/acs.jpclett.6b02420 doi: 10.1021/acs.jpclett.6b02420
|
[88] |
X. Ren, X. Yan, A. S. Ahmad et al., “Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite,” J. Phys. Chem. C 123, 15204–15208 (2019).10.1021/acs.jpcc.9b02854 doi: 10.1021/acs.jpcc.9b02854
|
[89] |
F. Wang, M. Tan, C. Li et al., “Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles,” Org. Electron. 67, 89–94 (2019).10.1016/j.orgel.2019.01.003 doi: 10.1016/j.orgel.2019.01.003
|
[90] |
F. Capitani, C. Marini, S. Caramazza et al., “High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite,” J. Appl. Phys. 119, 185901 (2016).10.1063/1.4948577 doi: 10.1063/1.4948577
|
[91] |
A. Jaffe, Y. Lin, C. M. Beavers et al., “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2, 201–209 (2016).10.1021/acscentsci.6b00055 doi: 10.1021/acscentsci.6b00055
|
[92] |
S. Sun, Z. Deng, Y. Wu et al., “Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: A single crystal X-ray diffraction and computational study,” Chem. Commun. 53, 7537–7540 (2017).10.1039/c7cc00995j doi: 10.1039/c7cc00995j
|
[93] |
Y. Lee, D. B. Mitzi, P. W. Barnes et al., “Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites,” Phys. Rev. B 68, 020103 (2003).10.1103/physrevb.68.020103 doi: 10.1103/physrevb.68.020103
|
[94] |
L. Wang, T. Ou, K. Wang et al., “Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride,” Appl. Phys. Lett. 111, 233901 (2017).10.1063/1.5004186 doi: 10.1063/1.5004186
|
[95] |
T. Ou, X. Ma, H. Yan et al., “Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite,” Appl. Phys. Lett. 113, 262105 (2018).10.1063/1.5063394 doi: 10.1063/1.5063394
|
[96] |
G. Yuan, S. Qin, X. Wu et al., “Pressure-induced phase transformation of CsPbI3 by X-ray diffraction and Raman spectroscopy,” Phase Transition 91, 38–47 (2017).10.1080/01411594.2017.1357180 doi: 10.1080/01411594.2017.1357180
|
[97] |
L. Zhang, L. Wang, K. Wang et al., “Pressure-induced structural evolution and optical properties of metal-halide perovskite CsPbCl3,” J. Phys. Chem. C 122, 15220–15225 (2018).10.1021/acs.jpcc.8b05397 doi: 10.1021/acs.jpcc.8b05397
|
[98] |
Y. Nagaoka, K. Hills-Kimball, R. Tan et al., “Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels,” Adv. Mater. 29, 1606666 (2017).10.1002/adma.201606666 doi: 10.1002/adma.201606666
|
[99] |
J. C. Beimborn, L. M. G. Hall, P. Tongying et al., “Pressure response of photoluminescence in cesium lead iodide perovskite nanocrystals,” J. Phys. Chem. C 122, 11024–11030 (2018).10.1021/acs.jpcc.8b03280 doi: 10.1021/acs.jpcc.8b03280
|
[100] |
J. Zhang, S. Ji, Y. Ma et al., “Tunable photoluminescence and an enhanced photoelectric response of Mn2+-doped CsPbCl3 perovskite nanocrystals via pressure-induced structure evolution,” Nanoscale 11, 11660–11670 (2019).10.1039/c9nr03045j doi: 10.1039/c9nr03045j
|
[101] |
C. Zhou, H. Lin, H. Shi et al., “A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission,” Angew. Chem., Int. Ed. 57, 1021–1024 (2018).10.1002/anie.201710383 doi: 10.1002/anie.201710383
|
[102] |
Q. Li, L. Yin, Z. Chen et al., “High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9,” Inorg. Chem. 58, 1621–1626 (2019).10.1021/acs.inorgchem.8b03190 doi: 10.1021/acs.inorgchem.8b03190
|
[103] |
C. Ortiz-Cervantes, P. I. Roman-Roman, J. Vazquez-Chavez et al., “Thousand-fold conductivity increase in 2D perovskites by polydiacetylene incorporation and doping,” Angew. Chem., Int. Ed. 57, 13882–13886 (2018).10.1002/anie.201809028 doi: 10.1002/anie.201809028
|
[104] |
D. H. Cao, C. C. Stoumpos, O. K. Farha et al., “2D homologous perovskites as light-absorbing materials for solar cell applications,” J. Am. Chem. Soc. 137, 7843–7850 (2015).10.1021/jacs.5b03796 doi: 10.1021/jacs.5b03796
|
[105] |
Y. Chen, Y. Sun, J. Peng et al., “Composition engineering in two-dimensional Pb-Sn-Alloyed perovskites for efficient and stable solar cells,” ACS Appl. Mater. Interfaces 10, 21343–21348 (2018).10.1021/acsami.8b06256 doi: 10.1021/acsami.8b06256
|
[106] |
M. I. Saidaminov, O. F. Mohammed, and O. M. Bakr, “Low-dimensional-networked metal halide perovskites: The next big thing,” ACS Energy Lett. 2, 889–896 (2017).10.1021/acsenergylett.6b00705 doi: 10.1021/acsenergylett.6b00705
|
[107] |
C. Zhou, H. Lin, Y. Tian et al., “Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency,” Chem. Sci. 9, 586–593 (2018).10.1039/c7sc04539e doi: 10.1039/c7sc04539e
|
[108] |
D. B. Mitzi, S. Wang, C. A. Feild et al., “Conducting layered organic-inorganic halides containing -oriented perovskite sheets,” Science 267, 1473–1476 (1995).10.1126/science.267.5203.1473 doi: 10.1126/science.267.5203.1473
|
[109] |
E. R. Dohner, E. T. Hoke, and H. I. Karunadasa, “Self-assembly of broadband white-light emitters,” J. Am. Chem. Soc. 136, 1718–1721 (2014).10.1021/ja411045r doi: 10.1021/ja411045r
|
[110] |
Z. Yuan, C. Zhou, Y. Tian et al., “One-dimensional organic lead halide perovskites with efficient bluish white-light emission,” Nat. Commun. 8, 14051 (2017).10.1038/ncomms14051 doi: 10.1038/ncomms14051
|
[111] |
S. Liu, S. Sun, C. K. Gan et al., “Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation,” Sci. Adv. 5, eaav9445 (2019).10.1126/sciadv.aav9445 doi: 10.1126/sciadv.aav9445
|
[112] |
G. Liu, L. Kong, P. Guo et al., “Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites,” ACS Energy Lett. 2, 2518–2524 (2017).10.1021/acsenergylett.7b00807 doi: 10.1021/acsenergylett.7b00807
|
[113] |
Y. Yuan, X. F. Liu, X. Ma et al., “Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure,” Adv. Sci. 6, 1900240 (2019).10.1002/advs.201900240 doi: 10.1002/advs.201900240
|
[114] |
D. Umeyama, Y. Lin, and H. I. Karunadasa, “Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite,” Chem. Mater. 28, 3241–3244 (2016).10.1021/acs.chemmater.6b01147 doi: 10.1021/acs.chemmater.6b01147
|
[115] |
L. A. T. Nguyen, D. N. Minh, Y. Yuan et al., “Pressure-induced fluorescence enhancement of FAαPbBr2+α composite perovskites,” Nanoscale 11, 5868–5873 (2019).10.1039/c8nr09780a doi: 10.1039/c8nr09780a
|
[116] |
S. Kumar, J. Jagielski, S. Yakunin et al., “Efficient blue electroluminescence using quantum-confined two-dimensional perovskites,” ACS Nano 10, 9720–9729 (2016).10.1021/acsnano.6b05775 doi: 10.1021/acsnano.6b05775
|
[117] |
G. Bounos, M. Karnachoriti, A. G. Kontos et al., “Defect perovskites under pressure: Structural evolution of Cs2SnX6 (X = Cl, Br, I),” J. Phys. Chem. C 122, 24004–24013 (2018).10.1021/acs.jpcc.8b08449 doi: 10.1021/acs.jpcc.8b08449
|
[118] |
L. Wu, Z. Dong, L. Zhang et al., “High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9,” ChemSusChem 12, 3971–3976 (2019).10.1002/cssc.201901388 doi: 10.1002/cssc.201901388
|