Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Filippov E. D., Skobelev I. Yu., Revet G., Chen S. N., Khiar B., Ciardi A., Khaghani D., Higginson D. P., Pikuz S. A., Fuchs J.. X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars[J]. Matter and Radiation at Extremes, 2019, 4(6): 064402. doi: 10.1063/1.5124350
Citation: Filippov E. D., Skobelev I. Yu., Revet G., Chen S. N., Khiar B., Ciardi A., Khaghani D., Higginson D. P., Pikuz S. A., Fuchs J.. X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars[J]. Matter and Radiation at Extremes, 2019, 4(6): 064402. doi: 10.1063/1.5124350

X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars

doi: 10.1063/1.5124350
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: edfilippov@ihed.ras.ru
  • Received Date: 2019-05-23
  • Accepted Date: 2019-08-03
  • Available Online: 2021-04-13
  • Publish Date: 2019-11-15
  • Recent achievements in laboratory astrophysics experiments with high-power lasers have allowed progress in our understanding of the early stages of star formation. In particular, we have recently demonstrated the possibility of simulating in the laboratory the process of the accretion of matter on young stars [G. Revet et al., Sci. Adv. 3 , e1700982 (2017)]. The present paper focuses on x-ray spectroscopy methods that allow us to investigate the complex plasma hydrodynamics involved in such experiments. We demonstrate that we can infer the formation of a plasma shell, surrounding the accretion column at the location of impact with the stellar surface, and thus resolve the present discrepancies between mass accretion rates derived from x-ray and optical-radiation astronomical observations originating from the same object. In our experiments, the accretion column is modeled by having a collimated narrow (1 mm diameter) plasma stream first propagate along the lines of a large-scale external magnetic field and then impact onto an obstacle, mimicking the high-density region of the stellar chromosphere. A combined approach using steady-state and quasi-stationary models was successfully applied to measure the parameters of the plasma all along its propagation, at the impact site, and in the structure surrounding the impact region. The formation of a hot plasma shell, surrounding the denser and colder core, formed by the incoming stream of matter is observed near the obstacle using x-ray spatially resolved spectroscopy.
  • loading
  • [1]
    G. Y. Liang, J. Y. Zhong, H. G. Wei, D. W. Yuan, Z. Zhang, C. Wang, B. Han, B. J. Zhu, W. M. Jiang, J. M. Peng, T. Tao, G. Y. Hu, F. L. Wang, X. Gao, B. Q. Zhu, J. Q. Zhu, X. W. Ma, Y. T. Li, G. Zhao, and J. Zhang, “Laboratory analog of heavy jets impacting a denser medium in herbig–haro (HH) objects,” Astrophys. J. 868, 56 (2018).10.3847/1538-4357/aae83d doi: 10.3847/1538-4357/aae83d
    [2]
    C. K. Li, P. Tzeferacos, D. Lamb, G. Gregori, P. A. Norreys, M. J. Rosenberg, R. K. Follett, D. H. Froula, M. Koenig, F. H. Seguin, J. A. Frenje, H. G. Rinderknecht, H. Sio, A. B. Zylstra, R. D. Petrasso, P. A. Amendt, H. S. Park, B. A. Remington, D. D. Ryutov, S. C. Wilks, R. Betti, A. Frank, S. X. Hu, T. C. Sangster, P. Hartigan, R. P. Drake, C. C. Kuranz, S. V Lebedev, and N. C. Woolsey, “Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet,” Nat. Commun. 7, 13081 (2016).10.1038/ncomms13081 doi: 10.1038/ncomms13081
    [3]
    C. M. Krauland, R. P. Drake, C. C. Kuranz, R. Sweeney, M. Grosskopf, S. Klein, R. Gillespie, P. A. Keiter, B. Loupias, and E. Falize, “Radiative reverse shock laser experiments relevant to accretion processes in cataclysmic variables,” Phys. Plasmas 20, 056502 (2013).10.1063/1.4805023 doi: 10.1063/1.4805023
    [4]
    B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Beard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdorfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. H.-P. Schlenvoigt, I. Y. Skobelev, A. Y. Y. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pepin, J. Fuchs, J. Béard, R. Bonito, J. Billette, M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson, F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P. H.-P. Schlenvoigt, I. Y. Skobelev, A. Y. Y. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank, O. Portugall, H. Pépin, and J. Fuchs, “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346, 325 (2014).10.1126/science.1259694 doi: 10.1126/science.1259694
    [5]
    S. N. Ryazantsev, I. Y. Skobelev, A. Y. Faenov, T. A. Pikuz, A. N. Grum-Grzhimailo, and S. A. Pikuz, “X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies,” JETP Lett. 102, 707 (2015).10.1134/s0021364015230149 doi: 10.1134/s0021364015230149
    [6]
    D. P. Higginson, G. Revet, B. Khiar, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, S. N. Chen, E. Filippov, D. Khaghani, K. Naughton, H. Pépin, S. Pikuz, O. Portugall, C. Riconda, R. Riquier, S. N. Ryazantsev, I. Y. Skobelev, A. Soloviev, M. Starodubtsev, T. Vinci, O. Willi, A. Ciardi, and J. Fuchs, “Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle,” High Energy Density Phys. 23, 48 (2017).10.1016/j.hedp.2017.02.003 doi: 10.1016/j.hedp.2017.02.003
    [7]
    D. P. Higginson, P. Korneev, J. Béard, S. N. Chen, E. D’Humières, H. Pépin, S. Pikuz, B. Pollock, R. Riquier, V. Tikhonchuk, and J. Fuchs, “A novel platform to study magnetized high-velocity collisionless shocks,” High Energy Density Phys. 17, 190 (2015).10.1016/j.hedp.2014.11.007 doi: 10.1016/j.hedp.2014.11.007
    [8]
    G. Revet, S. N. Chen, R. Bonito, B. Khiar, E. Filippov, C. Argiroffi, D. P. Higginson, S. Orlando, J. Béard, M. Blecher, M. Borghesi, K. Burdonov, D. Khaghani, K. Naughton, H. Pépin, O. Portugall, R. Riquier, R. Rodriguez, S. N. Ryazantsev, I. Yu. Skobelev, A. Soloviev, O. Willi, S. Pikuz, A. Ciardi, and J. Fuchs, “Laboratory unraveling of matter accretion in young stars,” Sci. Adv. 3, e1700982 (2017).10.1126/sciadv.1700982 doi: 10.1126/sciadv.1700982
    [9]
    S. Scaringi, T. J. Maccarone, E. Kording, C. Knigge, S. Vaughan, T. R. Marsh, E. Aranzana, V. S. Dhillon, and S. C. C. Barros, “Accretion-induced variability links young stellar objects, white dwarfs, and black holes,” Sci. Adv. 1, e1500686 (2015).10.1126/sciadv.1500686 doi: 10.1126/sciadv.1500686
    [10]
    A. Caratti O Garatti, B. Stecklum, R. Garcia Lopez, J. Eislöffel, T. P. Ray, A. Sanna, R. Cesaroni, C. M. Walmsley, R. D. Oudmaijer, W. J. De Wit, L. Moscadelli, J. Greiner, A. Krabbe, C. Fischer, R. Klein, and J. M. Ibañez, “Disk-mediated accretion burst in a high-mass young stellar object,” Nat. Phys. 13, 276 (2017).10.1038/nphys3942 doi: 10.1038/nphys3942
    [11]
    S. Orlando, G. G. Sacco, C. Argiroffi, F. Reale, and A. Maggio, “X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-beta values,” Astron. Astrophys. 510, A71 (2010).10.1051/0004-6361/200913565 doi: 10.1051/0004-6361/200913565
    [12]
    H. K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3 (2005).10.1016/j.hedp.2005.07.001 doi: 10.1016/j.hedp.2005.07.001
    [13]
    [14]
    A. Y. Faenov, I. Y. Skobelev, and F. B. Rosmej, “High resolution X-ray spectroscopy of laser generated plasmas,” Phys. Scr. T 80, 43 (1999).10.1238/physica.topical.080a00043 doi: 10.1238/physica.topical.080a00043
    [15]
    A. H. Gabriel, “Dielectronic satellite spectra for highly-charged helium-like ion lines,” Mon. Not. R. Astron. Soc. 160, 99 (1972).10.1093/mnras/160.1.99 doi: 10.1093/mnras/160.1.99
    [16]
    B. Han, F. Wang, J. Zhong, G. Liang, H. Wei, D. Yuan, B. Zhu, F. Li, C. Liu, Y. Li, J. Zhao, Z. Zhang, C. Wang, J. Xiong, G. Jia, N. Hua, J. Zhu, Y. Li, G. Zhao, and J. Zhang, “Measurement and analysis of K-shell lines of silicon ions in laser plasmas,” High Power Laser Sci. Eng. 6, e31 (2018).10.1017/hpl.2018.25 doi: 10.1017/hpl.2018.25
    [17]
    E. D. Filippov, S. A. Pikuz, I. Y. Skobelev, S. N. Ryazantsev, D. P. Higginson, D. Khaghani, G. Revet, S. N. Chen, and J. Fuchs, “Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method,” J. Phys.: Conf. Ser. 774, 012114 (2016).10.1088/1742-6596/774/1/012114 doi: 10.1088/1742-6596/774/1/012114
    [18]
    I. L. Beigman, P. Y. Pirogovskiy, L. P. Presnyakov, A. P. Shevelko, and D. B. Uskov, “Interaction of a laser-produced plasma with a solid surface: Soft X-ray spectroscopy of high-Z ions in a cool dense plasma,” J. Phys. B: At., Mol. Opt. Phys. 22, 2493 (1989).10.1088/0953-4075/22/16/007 doi: 10.1088/0953-4075/22/16/007
    [19]
    M. A. Mazing, P. Y. Pirogovskiy, A. P. Shevelko, and L. P. Presnyakov, “Interaction of a laser-produced plasma with a solid surface,” Phys. Rev. A 32, 3695 (1985).10.1103/physreva.32.3695 doi: 10.1103/physreva.32.3695
    [20]
    A. Ciardi, S. V. Lebedev, A. Frank, E. G. Blackman, J. P. Chittenden, C. J. Jennings, D. J. Ampleford, S. N. Bland, S. C. Bott, J. Rapley, G. N. Hall, F. A. Suzuki-Vidal, A. Marocchino, T. Lery, and C. Stehle, “The evolution of magnetic tower jets in the laboratory,” Phys. Plasmas 14, 056501 (2007).10.1063/1.2436479 doi: 10.1063/1.2436479
    [21]
    B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht, J. Billette, T. Burris-Mog, S. N. Chen, D. Da Silva, S. Dittrich, T. Herrmannsdörfer, B. Hirardin, F. Kroll, M. Nakatsutsumi, S. Nitsche, C. Riconda, L. Romagnagni, H. P. Schlenvoigt, S. Simond, E. Veuillot, T. E. Cowan, O. Portugall, H. Pépin, and J. Fuchs, “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551 doi: 10.1063/1.4795551
    [22]
    A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda, H. Pépin, and O. Portugall, “Astrophysics of magnetically collimated jets generated from laser-produced plasmas,” Phys. Rev. Lett. 110, 025002 (2013).10.1103/physrevlett.110.025002 doi: 10.1103/physrevlett.110.025002
    [23]
    P. J. Armitage, “Dynamics of protoplanetary disks,” Annu. Rev. Astron. Astrophys. 49, 195 (2011).10.1146/annurev-astro-081710-102521 doi: 10.1146/annurev-astro-081710-102521
    [24]
    C. Argiroffi, A. Maggio, G. Peres, J. J. Drake, J. L. Santiago, S. Sciortino, and B. Stelzer, “X-ray optical depth diagnostics of T Tauri accretion shocks,” Astron. Astrophys. 507, 939 (2009).10.1051/0004-6361/200912792 doi: 10.1051/0004-6361/200912792
    [25]
    R. L. Curran, C. Argiroffi, G. G. Sacco, S. Orlando, G. Peres, F. Reale, and A. Maggio, “Multi-wavelength diagnostics of accretion in an X-ray selected sample of CTTSs,” Astron. Astrophys. 526, 104 (2011).10.1051/0004-6361/201015522 doi: 10.1051/0004-6361/201015522
    [26]
    N. S. Brickhouse, S. R. Cranmer, A. K. Dupree, G. J. M. Luna, and S. Wolk, “A deep Chandra X-ray spectrum of the accreting young star TW Hydrae,” Astrophys. J. 710, 1835 (2010).10.1088/0004-637x/710/2/1835 doi: 10.1088/0004-637x/710/2/1835
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (148) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return