Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Xu Qiang, Zhou Shaotong, Wang Kun-lun, Zhang Siqun, Cai Hongchun, Ren Xiao, Liu Pan, Huang Xian bin, Zhao Li, Zou Wenkang. X-ray emission characteristics in magnetically driven plasma jet experiments on PTS facility[J]. Matter and Radiation at Extremes, 2020, 5(1): 014401. doi: 10.1063/1.5120256
Citation: Xu Qiang, Zhou Shaotong, Wang Kun-lun, Zhang Siqun, Cai Hongchun, Ren Xiao, Liu Pan, Huang Xian bin, Zhao Li, Zou Wenkang. X-ray emission characteristics in magnetically driven plasma jet experiments on PTS facility[J]. Matter and Radiation at Extremes, 2020, 5(1): 014401. doi: 10.1063/1.5120256

X-ray emission characteristics in magnetically driven plasma jet experiments on PTS facility

doi: 10.1063/1.5120256
  • Received Date: 2019-07-16
  • Accepted Date: 2019-11-20
  • Available Online: 2020-01-15
  • Publish Date: 2020-01-15
  • Jets are commonly observed astrophysical phenomena. To study the x-ray emission characteristics of jets, a series of radial foil Z-pinch experiments are carried out on the Primary Test Stand at the Institute of Fluid Physics, China Academy of Engineering Physics. In these experiments, x-ray emission ranging from the soft region (0.1–10 keV) to the hard region (10 keV–500 keV) is observed when the magnetic cavity breaks. The radiation flux of soft x-rays is measured by an x-ray diode and the dose rate of the hard x-rays by an Si-PIN detector. The experimental results indicate that the energy of the soft x-rays is several tens of kilojoules and that of the hard x-rays is ∼200 J. The radiation mechanism of the x-ray emission is briefly analyzed. This analysis indicates that the x-ray energy and the plasma kinetic energy come from the magnetic energy when the magnetic cavity breaks. The soft x-rays are thought to be produced by bremsstrahlung of thermal electrons (∼100 eV), and the hard x-rays by bremsstrahlung of super-hot electrons (∼mega-electron-volt). These results may be helpful to explain the x-ray emission by the jets from young stellar objects.
  • loading
  • [1]
    I. F. Mirabel and L. Rodrigues, “Formation of a black hole in the dark,” Science 300, 1119–1121 (2003).10.1126/science.1083451 doi: 10.1126/science.1083451
    [2]
    A. H. Cerqueira and E. M. de Gouveia Dal Pino, “MHD numerical simulations of proto-stellar jets,” Space Sci. Rev. 107, 337–340 (2003).10.1023/a:1025577218042 doi: 10.1023/a:1025577218042
    [3]
    B. Reipurth, P. Hartigan, S. Heathcote, J. A. Morse, and J. Bally, “Hubble space telescope images of the HH 111 jet,” Astron. J. 114, 757 (1997).10.1086/118509 doi: 10.1086/118509
    [4]
    D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington, and W. M. Wood-Vasey, “Hydrodynamic scalings: From astrophysics to laboratory,” Astrophys. J. 518, 821 (1999).10.1086/307293 doi: 10.1086/307293
    [5]
    D. D. Ryutov, R. P. Drake, and B. A. Remington, “Criteria for scaled laboratory simulations of astrophysical MHD phenomena,” Astrophys. J., Suppl. 127, 465 (2000).10.1086/313320 doi: 10.1086/313320
    [6]
    J. M. Stone, N. Turner, K. Estabrook, B. Remington, D. Farley, S. G. Glendinning, and S. Glenzer, “Testing astrophysical radiation hydrodynamics codes with hypervelocity jet experiments on the nova laser,” Astrophys. J., Suppl. 127, 497 (2000).10.1086/313337 doi: 10.1086/313337
    [7]
    L. M. Logory, P. E. Stry, and P. L. Miller, “Astrophysical jet experiments with colliding laser-produced plasmas,” Astrophys. J., Suppl. 127, 423 (2000).
    [8]
    J. M. Foster, B. H. Wilde, P. A. Rosen, R. J. R. Williams, B. E. Blue, R. F. Coker, R. P. Drake, A. Frank, P. A. Keiter, A. M. Khokhlov, J. P. Knauer, and T. S. Perry, “High-energy-density laboratory astrophysics studies of jets and bow shocks,” Astrophys. J. Lett. 634, L77 (2005).10.1086/498846 doi: 10.1086/498846
    [9]
    P. Hartigan, J. M. Foster, B. H. Wilde, R. F. Coker, P. A. Rosen, J. F. Hansen, B. E. Blue, R. J. R. Williams, R. Carver, and A. Frank, “Laboratory experiments, numerical simulations, and astronomical observations of deflected supersonic jets: Application to HH 110,” Astrophys. J. 705, 1073 (2009).10.1088/0004-637x/705/1/1073 doi: 10.1088/0004-637x/705/1/1073
    [10]
    D. R. Farley, K. G. Estabrook, S. G. Glendinning, S. H. Glenzer, B. A. Remington, K. Shigemori, J. M. Stone, R. J. Wallace, G. B. Zimmerman, and J. A. Harte, “Radiative jet experiments of astrophysical interest using intense lasers,” Phys. Rev. Lett. 83, 1982 (1999).10.1103/physrevlett.83.1982 doi: 10.1103/physrevlett.83.1982
    [11]
    K. Shigemori, R. Kodama, D. R. Farley, T. Koase, K. G. Estabrook, B. A. Remington, D. D. Ryutov, Y. Ochi, H. Azechi, J. Stone, and N. Turner, “Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets,” Phys. Rev. E 62, 8838 (2000).10.1103/physreve.62.8838 doi: 10.1103/physreve.62.8838
    [12]
    P. M. Bellan, M. Livio, Y. Kato, S. V. Lebedev, T. P. Ray, A. Ferrari, P. Hartigan, A. Frank, J. M. Foster, and P. Nicolai, “Astrophysical jets: Observations, numerical simulations, and laboratory experiments,” Phys. Plasmas 16, 041005 (2009).10.1063/1.3101812 doi: 10.1063/1.3101812
    [13]
    A. Ciardi, S. V. Lebedev, J. P. Chittenden, D. J. Ampleford, S. N. Bland, B. S. Bott, and J. Rapley, “Modeling magnetic tower jets in the laboratory,” Astrophys. Space Sci. 298, 277 (2005).10.1007/s10509-005-3947-8 doi: 10.1007/s10509-005-3947-8
    [14]
    S. V. Lebedev, A. Ciardi, D. J. Ampleford, S. N. Bland, S. C. Bott, J. P. Chittenden, G. N. Hall, J. Rapley, C. A. Jennings, A. Frank, E. G. Blackman, and T. Lery, “Magnetic tower outflows from a radial wire array Z-pinch,” Mon. Not. R. Astron. Soc. 361, 97 (2005).10.1111/j.1365-2966.2005.09132.x doi: 10.1111/j.1365-2966.2005.09132.x
    [15]
    A. Ciardi, S. V. Lebedev, A. Frank, E. G. Blackman, J. P. Chittenden, C. J. Jennings, D. J. Ampleford, S. N. Bland, S. C. Bott, J. Rapley, G. N. Hall, F. A. Suzuki-Vidal, A. Marocchino, T. Lery, and C. Stehle, “The evolution of magnetic tower jets in the laboratory,” Phys. Plasmas 14, 056501 (2007).10.1063/1.2436479 doi: 10.1063/1.2436479
    [16]
    A. Ciardi, S. V. Lebedev, A. Frank, F. Suzuki-Vidal, G. N. Hall, S. N. Bland, A. Harvey-Thompson, E. G. Blackman, and M. Camenzind, “Episodic magnetic bubbles and jets: Astrophysical implications from laboratory experiments,” Astrophys. J. Lett. 691, L147 (2008).10.1088/0004-637x/691/2/l147 doi: 10.1088/0004-637x/691/2/l147
    [17]
    F. Suzuki-Vidal, S. V. Lebedev, A. Ciardi, S. N. Bland, J. P. Chittenden, G. N. Hall, A. Harvey-Thompson, A. Marocchino, C. Ning, C. Stehle, A. Frank, E. G. Blackman, S. C. Bott, and T. Ray, “Formation of episodic magnetically driven radiatively cooled plasma jets in the laboratory,” Astrophys. Space Sci. 322, 19 (2009).10.1007/s10509-009-9981-1 doi: 10.1007/s10509-009-9981-1
    [18]
    P. Gourdain, I. C. Blesener, J. B. Greenly, D. A. Hammer, P. F. Knapp, B. R. Kusse, and P. C. Schrafel, “Initial experiments using radial foils on the Cornell Beam Research Accelerator pulsed power generator,” Phys. Plasmas 17, 012706 (2010).10.1063/1.3292653 doi: 10.1063/1.3292653
    [19]
    Q. Xu, J. Dan, G. Wang, S. Guo, S. Zhang et al., “The magnetically driven plasma jet produces a pressure of 33 GPa on PTS,” Phys. Plasmas 24, 010701 (2017).10.1063/1.4974038 doi: 10.1063/1.4974038
    [20]
    C. M. Hoffman, C. Sinnis, P. Fleury, and M. Punch, “Gamma-ray astronomy at high energies,” Rev. Mod. Phys. 71, 897 (1999).10.1103/revmodphys.71.897 doi: 10.1103/revmodphys.71.897
    [21]
    R. C. Hartman et al., “Multiepoch multiwavelength spectra and models for blazar 3C 279,” Astrophys. J. 553, 683 (1999).
    [22]
    H. M. Gunther, “Accretion, jets and winds: High-energy emission from young stellar objects,” Astron. Nachr. AN 332(5), 448–460 (2011).10.1002/asna.201111559 doi: 10.1002/asna.201111559
    [23]
    K. Hamaguchi, S. Yamauchi, and K. Koyama, “X-ray study of Herbig Ae/Be stars,” Astrophys. J. 618, 360–384 (2005).10.1086/423192 doi: 10.1086/423192
    [24]
    F. Suzuki-Vidal, S. V. Lebedev, S. N. Bland, G. N. Hall et al., “Generation of episodic magnetically driven plasma jets in a radial foil Z-pinch,” Phys. Plasmas 17, 112708 (2010).10.1063/1.3504221 doi: 10.1063/1.3504221
    [25]
    X. B. Huang, X. D. Ren, J. K. Dan, K. L. Wang, Q. Xu et al., “Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand,” Phys. Plasmas 24, 092704 (2017).10.1063/1.4998619 doi: 10.1063/1.4998619
    [26]
    K.-l. Wang, X.-d. Ren, X.-b. Huang, S.-q. Zhang, S.-t. Zhou et al., “Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode,” Rev. Sci. Instrum. 86, 113508 (2015).10.1063/1.4934863 doi: 10.1063/1.4934863
    [27]
    M. Reginattoa, P. Goldhagena, and S. Neumann, “Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED,” Nucl. Instrum. Methods Phys. Res. A 476, 242–246 (2002).10.1016/s0168-9002(01)01439-5 doi: 10.1016/s0168-9002(01)01439-5
    [28]
    H. Ferdinande, G. Knuyt, R. van de Vijver, and R. Jacobs, “Numerical calculation of absolute forward thick-target bremsstrahlung spectra,” Nucl. Instrum. Methods 91, 135 (1971).10.1016/0029-554x(71)90649-5 doi: 10.1016/0029-554x(71)90649-5
    [29]
    S. V. Lebedev, J. P. Chittenden, F. N. Beg, S. N. Bland, A. Ciardi, D. Ampleford, S. Hughes, M. G. Haines, A. Frank, E. G. Blackman, and T. Gardiner, “Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets,” Astrophys. J. 564, 113 (2002).10.1086/324183 doi: 10.1086/324183
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (418) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return