Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 3
May  2019
Turn off MathJax
Article Contents
Koga James K., Murakami Masakatsu, Arefiev Alexey V., Nakamiya Yoshihide. Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses[J]. Matter and Radiation at Extremes, 2019, 4(3): 034401. doi: 10.1063/1.5086933
Citation: Koga James K., Murakami Masakatsu, Arefiev Alexey V., Nakamiya Yoshihide. Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses[J]. Matter and Radiation at Extremes, 2019, 4(3): 034401. doi: 10.1063/1.5086933

Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses

doi: 10.1063/1.5086933
  • Received Date: 2018-12-25
  • Accepted Date: 2019-02-19
  • Available Online: 2021-04-13
  • Publish Date: 2019-05-15
  • The interaction of micro-bubbles with ultra-intense laser pulses has been shown to generate ultra-high proton densities and correspondingly high electric fields. We investigate the possibility of using such a combination to study the fundamental physical phenomenon of vacuum polarization. With current or near-future laser systems, measurement of vacuum polarization via the bending of gamma rays that pass near imploded micro-bubbles may be possible. Since it is independent of photon energy to within the leading-order solution of the Heisenberg–Euler Lagrangian and the geometric optics approximation, the corresponding index of refraction can dominate the indices of refraction due to other effects at sufficiently high photon energies. We consider the possibility of its application to a transient gamma-ray lens.
  • loading
  • [1]
    B. L. Garrec, S. Sebban, D. Margarone, M. Precek, S. Weber, O. Klimo, G. Korn, and B. Rus, “ELI-beamlines: Extreme light infrastructure science and technology with ultra-intense lasers,” Proc. SPIE 8962, 89620I (2014).10.1117/12.2039165 doi: 10.1117/12.2039165
    [2]
    S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, I. Andrei, S. Ataman, M. O. Cernaianu, L. D’Alessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, P. Ghenuche, D. G. Ghita, C. Matei, K. Seto, M. Zeng, and N. V. Zamfir, “The extreme light infrastructure—nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81(9), 094301 (2018).10.1088/1361-6633/aacfe8 doi: 10.1088/1361-6633/aacfe8
    [3]
    B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, and Z. Xu, “Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam,” Plasma Phys. Controlled Fusion 60(4), 044002 (2018).10.1088/1361-6587/aaa7fb doi: 10.1088/1361-6587/aaa7fb
    [4]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012).10.1103/RevModPhys.84.1177 doi: 10.1103/RevModPhys.84.1177
    [5]
    A. Milstein and M. Schumacher, “Present status of Delbrück scattering,” Phys. Rep. 243(4), 183–214 (1994).10.1016/0370-1573(94)00058-1 doi: 10.1016/0370-1573(94)00058-1
    [6]
    M. Schumacher, “Delbrück scattering,” Radiat. Phys. Chem. 56(1), 101–111 (1999).10.1016/S0969-806X(99)00289-3 doi: 10.1016/S0969-806X(99)00289-3
    [7]
    W. Greiner, B. Müller, and J. Rafelski, Evolution of the Vacuum State in Supercritical Potentials (Springer, Berlin, Heidelberg, 1985), Chap. 10, pp. 257–299.
    [8]
    U. D. Jentschura, H. Gies, S. R. Valluri, D. R. Lamm, and E. J. Weniger, “Qed effective action revisited,” Can. J. Phys. 80(3), 267–284 (2002).10.1139/p01-139 doi: 10.1139/p01-139
    [9]
    F. Karbstein, “Photon polarization tensor in a homogeneous magnetic or electric field,” Phys. Rev. D 88, 085033 (2013).10.1103/PhysRevD.88.085033 doi: 10.1103/PhysRevD.88.085033
    [10]
    M. Murakami, A. Arefiev, and M. A. Zosa, “Generation of ultrahigh field by micro-bubble implosion,” Sci. Rep. 8(1), 7537 (2018).10.1038/s41598-018-25594-3 doi: 10.1038/s41598-018-25594-3
    [11]
    F. Sauter, “Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie Diracs,” Z. Phys. 69(11), 742–764 (1931).10.1007/BF01339461 doi: 10.1007/BF01339461
    [12]
    W. Heisenberg and H. Euler, “Folgerungen aus der diracschen theorie des positrons,” Z. Phys. 98(11), 714–732 (1936).10.1007/BF01343663 doi: 10.1007/BF01343663
    [13]
    J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664–679 (1951).10.1103/PhysRev.82.664 doi: 10.1103/PhysRev.82.664
    [14]
    J. Y. Kim and T. Lee, “Light bending by nonlinear electrodynamics under strong electric and magnetic field,” J. Cosmol. Astropart. Phys. 2011(11), 017.10.1088/1475-7516/2011/11/017 doi: 10.1088/1475-7516/2011/11/017
    [15]
    W.-y. Tsai and T. Erber, “Propagation of photons in homogeneous magnetic fields: Index of refraction,” Phys. Rev. D 12, 1132–1137 (1975).10.1103/PhysRevD.12.1132 doi: 10.1103/PhysRevD.12.1132
    [16]
    J. Y. Kim and T. Lee, “Light bending in a coulombic field,” Mod. Phys. Lett. A 26(20), 1481–1485 (2011).10.1142/S0217732311035924 doi: 10.1142/S0217732311035924
    [17]
    M. M. Günther, A. V. Volotka, M. Jentschel, S. Fritzsche, T. Stöhlker, P. G. Thirolf, and M. Zepf, “Dispersive refraction of different light to heavy materials at MeV γ-ray energies,” Phys. Rev. A 97, 063843 (2018).10.1103/PhysRevA.97.063843 doi: 10.1103/PhysRevA.97.063843
    [18]
    T. Lee, “Bending of light in a coulomb gas,” Phys. Rev. A 98, 033811 (2018).10.1103/PhysRevA.98.033811 doi: 10.1103/PhysRevA.98.033811
    [19]
    V. N. Baǐer, A. I. Mil’shteǐn, and V. M. Strakhovenko, “Interaction between a photon and an intense electromagnetic wave,” JETP 42(6), 961–965 (1975), http://www.jetp.ac.ru/cgi-bin/dn/e 042 06 0961.pdf.
    [20]
    S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Ann. Phys. 67(2), 599–647 (1971).10.1016/0003-4916(71)90154-0 doi: 10.1016/0003-4916(71)90154-0
    [21]
    T. Heinzl and O. Schröder, “Large orders in strong-field qed,” J. Phys. A: Math. Gen. 39(37), 11623 (2006).10.1088/0305-4470/39/37/018 doi: 10.1088/0305-4470/39/37/018
    [22]
    D. J. Stark, C. Bhattacharjee, A. V. Arefiev, T. Toncian, R. D. Hazeltine, and S. M. Mahajan, “Relativistic plasma polarizer: Impact of temperature anisotropy on relativistic transparency,” Phys. Rev. Lett. 115, 025002 (2015).10.1103/PhysRevLett.115.025002 doi: 10.1103/PhysRevLett.115.025002
    [23]
    A. Arefiev, D. J. Stark, T. Toncian, and M. Murakami, “Relativistic effects in laser plasmas-plasma birefringence and generation of mega-tesla magnetic field,” J. Plasma Fusion Res. 93(11), 535–544 (2017) (in Japanese).
    [24]
    P. Kane, L. Kissel, R. Pratt, and S. Roy, “Elastic scattering of γ-rays and x-rays by atoms,” Phys. Rep. 140(2), 75–159 (1986).10.1016/0370-1573(86)90018-9 doi: 10.1016/0370-1573(86)90018-9
    [25]
    T. Ericson and J. Hüfner, “Low-frequency photon scattering by nuclei,” Nucl. Phys. B 57(2), 604–616 (1973).10.1016/0550-3213(73)90120-X doi: 10.1016/0550-3213(73)90120-X
    [26]
    R. Solberg, K. Mork, and I. Øverbø, “Coulomb and screening corrections to delbrück forward scattering,” Phys. Rev. A 51, 359–362 (1995).10.1103/PhysRevA.51.359 doi: 10.1103/PhysRevA.51.359
    [27]
    J. J. Klein and B. P. Nigam, “Dichroism of the vacuum,” Phys. Rev. 136, B1540–B1542 (1964).10.1103/PhysRev.136.B1540 doi: 10.1103/PhysRev.136.B1540
    [28]
    R. Battesti and C. Rizzo, “Magnetic and electric properties of a quantum vacuum,” Rep. Prog. Phys. 76(1), 016401 (2013).10.1088/0034-4885/76/1/016401 doi: 10.1088/0034-4885/76/1/016401
    [29]
    J. S. Heyl and L. Hernquist, “Birefringence and dichroism of the QED vacuum,” J. Phys. A: Math. Gen 30(18), 6485 (1997).10.1088/0305-4470/30/18/022 doi: 10.1088/0305-4470/30/18/022
    [30]
    [31]
    J. H. Hubbell, H. A. Gimm, and I. Øverbø, “Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV-100 GeV photons in elements Z = 1 to 100,” J. Phys. Chem. Ref. Data 9(4), 1023–1148 (1980).10.1063/1.555629 doi: 10.1063/1.555629
    [32]
    A. M. Johannessen, K. J. Mork, and I. Øverbø, “Photon-splitting cross sections,” Phys. Rev. D 22, 1051–1061 (1980).10.1103/PhysRevD.22.1051 doi: 10.1103/PhysRevD.22.1051
    [33]
    Z. Bialynicka-Birula and I. Bialynicki-Birula, “Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field,” Phys. Rev. D 2, 2341–2345 (1970).10.1103/PhysRevD.2.2341 doi: 10.1103/PhysRevD.2.2341
    [34]
    K. Dupraz, K. Cassou, N. Delerue, P. Fichot, A. Martens, A. Stocchi, A. Variola, F. Zomer, A. Courjaud, E. Mottay, F. Druon, G. Gatti, A. Ghigo, T. Hovsepian, J. Y. Riou, F. Wang, A. C. Mueller, L. Palumbo, L. Serafini, and P. Tomassini, “Design and optimization of a highly efficient optical multipass system for γ-ray beam production from electron laser beam compton scattering,” Phys. Rev. Spec. Top.--Accel. Beams 17, 033501 (2014).10.1103/PhysRevSTAB.17.033501 doi: 10.1103/PhysRevSTAB.17.033501
    [35]
    T. Nakamura, J. K. Koga, T. Z. Esirkepov, M. Kando, G. Korn, and S. V. Bulanov, “High-power γ-ray flash generation in ultraintense laser-plasma interactions,” Phys. Rev. Lett. 108, 195001 (2012).10.1103/PhysRevLett.108.195001 doi: 10.1103/PhysRevLett.108.195001
    [36]
    D. J. Stark, T. Toncian, and A. V. Arefiev, “Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field,” Phys. Rev. Lett. 116, 185003 (2016).10.1103/PhysRevLett.116.185003 doi: 10.1103/PhysRevLett.116.185003
    [37]
    D. G. Bruns, “Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse,” Classical Quantum Gravity 35(7), 075009 (2018).10.1088/1361-6382/aaaf2a doi: 10.1088/1361-6382/aaaf2a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (431) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return