Citation: | Razorenov S.V.. Influence of structural factors on the strength properties of aluminum alloys under shock wave loading[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.03.004 |
[1] |
T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, et al., Spall Fracture, Springer, New York, 2003, 404 pp.
|
[2] |
G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, Shock-wave Phenomena in Condensed Matter, Yanus-K, Moscow, 1996, 407 pp. (In Russian).
|
[3] |
Ya.B. Zel'dovich, Yu.P. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, vol. I, Academic Press, New York, 1966.
|
[4] |
G.I. Kanel, S.V. Razorenov, V.E. Fortov, Shock-wave Phenomena and the Properties of Condensed Matter, Springer, New York, 2004, 321 pp.
|
[5] |
L.M. Barker, R.E. Hollenbach, Laser interferometry for measuring high velocities of any reflecting surface, J. Appl. Phys. 43 (1972) 4669–4675.10.1063/1.1660986
|
[6] |
G.V. Garkushin, G.I. Kanel, S.V. Razorenov, Deformation and breaking strength of aluminum AD1 for a shock wave stress at temperatures of 20 and 600°C, Phys. Solid State 52 (11) (2010) 2369–2375.10.1134/s1063783410110247
|
[7] |
G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer, Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point, J. Appl. Phys. 90 (1) (2001) 136–143.10.1063/1.1374478
|
[8] |
S.P. Marsh, LASL Shock Hugoniot Data, Berkeley, University of California Press, 1980, 658 pp.
|
[9] |
G.I. Kanel, Spall fracture: methodological aspects, mechanisms and governing factors, Int. J. Fract. 163 (1–2) (2010) 173–191.10.1007/s10704-009-9438-0
|
[10] |
S.V. Razorenov, G.I. Kanel, The strength of copper single crystals and the factors governing metal fracture in uniaxial dynamic stretching, Phys. Met. Metallogr. 74 (5) (1992) 526–530.
|
[11] |
G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, K. Baumung, et al., Spall strength of molybdenum single crystals, J. Appl. Phys. 74 (12) (1993) 7162–7165.10.1063/1.355032
|
[12] |
A.A. Bogach, G.I. Kanel, S.V. Razorenov, A.V. Utkin, S.G. Protasova V.G. Sursaeva, Resistance of zinc crystals to shock deformation and fracture at elevated temperatures, Phys. Solid State 40 (10) (1998) 1676–1680.10.1134/1.1130633
|
[13] |
S.V. Razorenov, G.I. Kanel, G.V. Garkushin, O.N. Ignatova, Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures, Phys. Solid State 54 (4) (2012) 790–797.10.1134/s1063783412040233
|
[14] |
S.V. Razorenov, A.S. Savinykh, E.B. Zaretsky, Elastic-plastic deformation and fracture of shock-compressed single-crystal and polycrystalline copper near melting, Tech. Phys. 58 (10) (2013) 1437–1442.10.1134/s1063784213100216
|
[15] |
G.I. Kanel, G.V. Garkushin, A.S. Savinykh, S.V. Razorenov, T. de Resseguier, et al., Shock response of magnesium single crystals at normal and elevated temperatures, J. Appl. Phys. 116 (2014) 143504.10.1063/1.4897555
|
[16] |
G.I. Kanel, E.B. Zaretsky, S.V. Razorenov, S.I. Ashitkov, V.E. Fortov, Unusual plasticity and strength of metals at ultra-short load durations, Phys. Usp. 60 (5) (2017) 490–508.10.3367/ufne.2016.12.038004.
|
[17] |
S.I. Ashitkov, P.S. Komarov, A.V. Ovchinnikov, E.V. Struleva, M.B. Agranat, Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser, Quant. Electron. 43 (3) (2013) 242–249.10.1070/qe2013v043n03abeh015104
|
[18] |
S.I. Ashitkov, M.B. Agranat, G.I. Kanel, P.S. Komarov, V.E. Fortov, Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses, J. Exp. Theor. Phys. Lett. 92 (2010) 516–520.10.1134/s0021364010200051
|
[19] |
G.V. Sin’ko, N.A. Smirnov, Ab initio calculations of the equation of state and elastic constants of aluminum in the region of negative pressures, J. Exp. Theor. Phys. Lett. 75 (3) (2002) 184–186.10.1134/1.1475719.
|
[20] |
V.D. Glusman, G.I. Kanel, V.F. Loskutov, V.E. Fortov, I.E. Khorev, Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading, Strength Mater. 17 (8) (1985) 1093–1099.10.1007/bf01533790
|
[21] |
S.V. Razorenov, A.A. Bogach, G.I. Kanel, The effect of heat treatment and polymorphic transformations on the dynamic strength of steel 40 Kh, Phys. Met. Metallogr. 83 (1) (1997) 100–103.
|
[22] |
G.V. Garkushin, S.V. Razorenov, G.I. Kanel, Effect of structural factors on submicrosecond strength of D16T aluminum alloy, Tech. Phys. 53 (11) (2008) 1441–1446.10.1134/s1063784208110078
|
[23] |
V.A. Ogorodnikov, E.Yu. Borovkova, S.V. Erunov, Strength of some grades of steel and Armco iron under shock compression and rarefaction at pressures of 2–200 GP, Combust. Explos. Shock Waves 40 (5) (2004) 597–604.10.1023/b:cesw.0000041413.64269.1c
|
[24] |
G.T. Gray III, N.K. Bourne, A.M. Zocher, P.J. Maudlin, J.C.F. Millett, Influence of crystallographic anisotropy on the Hopkinson fracture “spallation” of zirconium, in: M.D. Furnish, L.C. Chhabildas, R.S. Hixson (Eds.), Shock Compression of Condensed Matter-1999, AIP Press, Woodbury, NY, 2000, pp. 509–512.
|
[25] |
G.T. Gray III, M.F. Lopez, N.K. Bourne, J.C.F. Millett, K.S. Vecchio, Influence of microstructural anisotropy on the spallation of 1080 eutectoid steel, In: M.D. Furnish, N.N. Thadhani, Y. Horie (Eds.), Shock Compression of Condensed Matter-2001, AIP Press, Melville, NY, 2002, pp. 479–482.
|
[26] |
K. Baumung, G.I. Kanel, S.V. Razorenov, D. Rusch, J. Singer, et al., Investigations of the dynamic strength variations in metals, J. Phys. 7 (1997) C3–C927 IV France.
|
[27] |
M.D. Furnish, W.D. Reinhart, W.M. Trott, L.C. Chhabildas, T.J. Vogler, Variability in dynamic properties of tantalum: spall, Hugoniot elastic limit and attenuation, in: M.D. Furnish, et al. (Ed.), Shock Compression of Condensed Matter – 2005, AIP Conference Proceedings,vol. 845, 2006, pp. 615–618. New York.10.1063/1.2263397
|
[28] |
M.A. Meyers, D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue, et al., Constitutive description of dynamic deformation: physically-based mechanisms, Mater. Sci. Eng.: A 322 (2002) 194–216.10.1016/s0921-5093(01)01131-5
|
[29] |
E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B 64 (1951) 747–753.10.1088/0370-1301/64/9/303
|
[30] |
N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel 174 (1953) 25–28.
|
[31] |
R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, S.E. Aleksandrov, R.V. Goldshtein, Superstrength of ultrafine grained aluminum alloys produced by severe plastic deformation, Dokl. Phys. 55 (6) (2010) 267–270.10.1134/s1028335810060054
|
[32] |
T.G Langdon, Ultrafine-grained materials: a personal perspective, Int. J. Mater. Res. 98 (4) (2007) 251–254.10.3139/146.101473
|
[33] |
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782–817.10.1016/j.actamat.2012.10.038
|
[34] |
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.10.1016/s0079-6425(99)00007-9
|
[35] |
G.A. Malygin, Strength and plasticity of nanocrystalline materials and nanosized crystals, Physics Usp 54 (2011) 1091–1116.10.3367/ufne.0181.201111a.1129
|
[36] |
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427–556.10.1016/j.pmatsci.2005.08.003
|
[37] |
M. Hockauf, L.W. Meyer, T. Hprin, M. Hietschold, S. Schultze, et al., Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue, Int. J. Mater. Res. 97 (10) (2006) 1392–1400.10.3139/146.101383
|
[38] |
L.W. Meyer, M. Hockauf, L. Krüger, I. Schneider, Compressive behavior of ultrafine-grained AA6063T6 over a wide range of strains and strain rates, Int. J. Mater. Res. 98 (3) (2007) 191–199.10.3139/146.101462
|
[39] |
J.M. Winey, B.M. LaLone, P.B. Trivedi, Y.M. Gupta, Elastic wave amplitudes in shock-compressed thin polycrystalline aluminum samples, J. Appl. Phys. 106 (2009) 073508.10.1063/1.3236654
|
[40] |
T.E. Arvidsson, Y.M. Gupta, G.E. Duvall, Precursor decay in 1060 aluminum, J. Appl. Phys. 46 (1975) 4474–4481.10.1063/1.321423
|
[41] |
G.I. Kanel, S.V. Razorenov, A.A. Bogatch, A.V. Utkin, V.E. Fortov, et al., Spall fracture properties of aluminum and magnesium at high temperatures, J. Appl. Phys. 79 (11) (1996) 8310–8317.10.1063/1.362542
|
[42] |
S.V. Razorenov, G.I. Kanel, V.E. Fortov, Submicrosecond strength of aluminum and an aluminum-magnesium alloy AMg6M at normal and enhanced temperatures, Phys. Met. Metallogr. 95 (1) (2003) 86–91.
|
[43] |
K. Baumung, H. Bluhm, G.I. Kanel, G. Müller, S.V. Razorenov, et al., Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures, Int. J. Imp. Eng. 25 (7) (2001) 631–639.10.1016/s0734-743x(01)00004-5
|
[44] |
G.I. Kanel, S.V. Razorenov, Anomalies in the temperature dependences of the bulk and shear strength of aluminum single crystals in the submicrosecond range, Phys. Solid State 43 (5) (2001) 871–877.10.1134/1.1371368
|
[45] |
E.V. Shorokhov, I. N. Zhgilev, R.Z. Valiev, Method of dynamic treatment of materials. RF Patent 2283717. Byull. Izobret., 26 (2006).
|
[46] |
I.V. Khomshaya, E.V. Shorokhov, V.I. Zel’dovich, A.E. Kheifets, N.Yu. Frolova, et al., Study of the structure and mechanical properties of submicrocrystalline and nanocrystalline copper produced by high-rate pressing, Phys. Met. Metallogr. 111 (6) (2011) 612–622.10.1134/s0031918x11050097
|
[47] |
V.I. Zel’dovich, E.V. Shorokhov, N.Yu. Frolova, et al., High-rate deformation of titanium subjected to dynamic channel-angular pressing, Phys. Met. Metallogr. 105 (4) (2008) 402–408.
|
[48] |
V.I. Zel’dovich, I.V. Khomskaya, N.Yu Frolova, A.E. Kheifets, E.V. Shorokhov, et al., Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging, Phys. Met. Metallogr. 114 (5) (2013) 411–418.
|
[49] |
I.G. Brodova, A.N. Petrova, I.G. Shirinkina, E.V. Shorokhov, I.V. Minaev, et al., Fragmentation of the structure in Al-based alloys upon high speed effect, Rev. Adv. Mater. Sci. 25 (2) (2010) 128–135.
|
[50] |
A.N. Petrova, I.G. Brodova, O.A. Plekhov, O.B. Naimark, E.V. Shorokhov, Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression, Tech. Phys. 59 (7) (2014) 989–996.10.1134/s1063784214070226
|
[51] |
M.V. Aniskin, O.N. Ignatova, I.I. Kaganova, A.V. Kalmanov, E.V. Koshatova, et al., Mechanical properties of tantalum with different types of microstructure under high-rate deformation, Phys. Mesomech. 14 (1) (2011) 79–84.10.1016/j.physme.2011.04.010
|
[52] |
S.V. Razorenov, A.S. Savinykh, E.B. Zaretsky, G.I. Kanel, Yu.R. Kolobov, Effect of preliminary strain hardening on the flow stress of titanium and a titanium alloy during shock compression, Phys. Solid State 47 (4) (2005) 663–669.10.1134/1.1913977
|
[53] |
G.V. Garkushin, G.E. Ivanchikhina, S.V. Razorenov, O.N. Ignatova, A.N. Malyshev, et al., Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading duration, Phys. Met. Metallogr. 111 (2) (2011) 197–206.10.1134/s0031918x11010170
|
[54] |
P.W. Bridgman, On torsion combined with compression, J. Appl. Phys. 14 (1943) 273–283.10.1063/1.1714987
|
[55] |
P.W. Bridgman, The effect of hydrostatic pressure on plastic flow under shearing stress, J. Appl. Phys. 17 (1946) 692–697.10.1063/1.1707772
|
[56] |
P.W. Bridgman, Studies in Large Scale Plastic Flow and Fracture, McGraw-Hill, New York, NY, 324 pp.
|
[57] |
Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater. 39 (9) (1998) 1221–1227.10.1016/s1359-6462(98)00302-9
|
[58] |
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (2) (1999) 579–583.10.1016/s1359-6454(98)00365-6
|