Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
Li Minghua, Chen Liming, Li Dazhang, Huang Kai, Li Yifei, Ma Yong, Yan Wenchao, Tao Mengze, Tan Junhao, Sheng Zhengming, Zhang Jie. Collimated gamma rays from laser wakefield accelerated electrons[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.03.002
Citation: Li Minghua, Chen Liming, Li Dazhang, Huang Kai, Li Yifei, Ma Yong, Yan Wenchao, Tao Mengze, Tan Junhao, Sheng Zhengming, Zhang Jie. Collimated gamma rays from laser wakefield accelerated electrons[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.03.002

Collimated gamma rays from laser wakefield accelerated electrons

doi: 10.1016/j.mre.2018.03.002
More Information
  • Corresponding author: *Corresponding author. Institute of Physics, Chinese Academy of Sciences, 8 NanSanJie, Haidian, Beijing 100190, China. Fax: +86 10 82649318. E-mail address: lmchen@iphy.ac.cn (L. Chen).
  • Received Date: 2018-01-22
  • Accepted Date: 2018-03-14
  • Publish Date: 2018-07-15
  • Betatron radiation from laser wakefield accelerated electrons and X-rays scattered off a counter-propagating relativistic electron bunch are collimated and hold the potential to extend the energy range to hard X-ray or gamma ray band. The peak brightness of these incoherent radiations could reach the level of the brightest synchrotron light sources in the world due to their femtosecond pulse duration and source size down to a few micrometers. In this article, the principle and properties of these radiation sources are briefly reviewed and compared. Then we present our recent progress in betatron radiation enhancement in the perspective of both photon energy and photon number. The enhancement is triggered by using a clustering gas target, arousing a second injection of a fiercely oscillating electron bunch with large charge or stimulating a resonantly enhanced oscillation of the ionization injected electrons. By adopting these methods, bright photon source with energy over 100 keV is generated which would greatly impact applications such as nuclear physics, diagnostic radiology, laboratory astrophysics and high-energy density science.
  • loading
  • [1]
    Eggl, E., Schleede, S., Bech, M., Achterhold, K., Loewen, R., et al., X-ray phase-contrast tomography with a compact laser-driven synchrotron source, Proc. Natl. Acad. Sci. U.S.A. 112 (2015), http://dx.doi.org/10.1073/pnas.1500938112.
    [2]
    Achterhold, K., Bech, M., Schleede, S., Potdevin, G., Ruth, R., et al., Monochromatic computed tomography with a compact laser-driven X-ray source, Sci. Rep. 3 (2013) 1313, http://dx.doi.org/10.1038/srep01313.
    [3]
    Schlenvoigt, H.-P., Haupt, K., Debus, A., Budde, F., Jäckel, O., et al., A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator, Nat. Phys. 4 (2007) 130–133, http://dx.doi.org/10.1038/nphys811.
    [4]
    Malka, V., Laser plasma accelerators, Phys. Plasmas 55501 (2013), http://dx.doi.org/10.1063/1.3695389.
    [5]
    Esarey, E., Schroeder, C.B., Leemans, W.P., Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81 (2009), http://dx.doi.org/10.1103/RevModPhys.81.1229.
    [6]
    Tajima, J.M., Dawson, T., Laser electron accelerator, Phys. Rev. Lett. 43 (1979) 267–270.10.1103/physrevlett.43.267
    [7]
    Lu, W., Tzoufras, M., Joshi, C., Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Phys. Rev. Accel. Beams 61301 (2007) 1–12, http://dx.doi.org/10.1103/PhysRevSTAB.10.061301.
    [8]
    Pukhov, A., Meyer-ter-Vehn, J., Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B Lasers Opt. 74 (2002) 355–361, http://dx.doi.org/10.1007/s003400200795.
    [9]
    Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S.A., et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4 (2013) 1988, http://dx.doi.org/10.1038/ncomms2988.
    [10]
    Nakamura, K., Geddes, C.G.R., Leemans, W.P., Nagler, B., Gonsalves, A.J., et al., GeV electron beams from a centimetre-scale accelerator, Nat. Phys. 2 (2006) 9–12, http://dx.doi.org/10.1038/nphys418.
    [11]
    Ding, C., Xiong, W., Fan, T., Hickstein, D.D., Popmintchev, T., et al., High flux coherent super-continuum soft X-ray source driven by a single-stage, 10 mJ, Ti:sapphire amplifier-pumped OPA, Opt. Express 22 (2014) 6194, http://dx.doi.org/10.1364/OE.22.006194.
    [12]
    Chen, L.M., Kando, M., Xu, M.H., Li, Y.T., Koga, J., et al., Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil, Phys. Rev. Lett. 100 (2008) 1–4, http://dx.doi.org/10.1103/PhysRevLett.100.045004.
    [13]
    Chen, L.M., Wang, W.M., Kando, M., Hudson, L.T., Liu, F., et al., High contrast femtosecond laser-driven intense hard X-ray source for imaging application, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 619 (2010) 128–132, http://dx.doi.org/10.1016/j.nima.2009.11.048.
    [14]
    Li, M., Huang, K., Chen, L., Yan, W., Tao, M., et al., Laser-driven powerful kHz hard X-ray source, Radiat. Phys. Chem. (2016) 1–5, http://dx.doi.org/10.1016/j.radphyschem.2016.01.042.
    [15]
    Glinec, Y., Faure, J., Le Dain, L., Darbon, S., Hosokai, T., et al., High-resolution γ-ray radiography produced by a laser-plasma driven electron source, Phys. Rev. Lett. 94 (2005) 1–4, http://dx.doi.org/10.1103/PhysRevLett.94.025003.
    [16]
    Chen, L.M., Yan, W.C., Li, D.Z., Hu, Z.D., Zhang, L., et al., Bright betatron X-ray radiation from a laser-driven-clustering gas target, Sci. Rep. 3 (2013) 1912, http://dx.doi.org/10.1038/srep01912.
    [17]
    Yan, W., Chen, L., Li, D., Zhang, L., Hafz, N.A.M., et al., Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 5825–5830, http://dx.doi.org/10.1073/pnas.1404336111.
    [18]
    Ma, Y., Chen, L., Li, D., Yan, W., Huang, K., et al., Generation of femtosecond gamma-ray bursts stimulated by laser-driven hosing evolution, Sci. Rep. 6 (2016), http://dx.doi.org/10.1038/srep30491.
    [19]
    Huang, K., Chen, L.M., Li, Y.F., Li, D.Z., Tao, M.Z., et al., Resonantly Excited Betatron Hard X-rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator, 2015, pp. 1–5. http://dx.doi.org/10.1038/srep27633.
    [20]
    Jackson, J.D., Classical Electrodynamics, third ed. Wiley, New York, 2001.
    [21]
    Corde, S., Ta Phuoc, K., Lambert, G., Fitour, R., Malka, V., et al., Femtosecond X rays from laser-plasma accelerators, Rev. Mod. Phys. 85 (2013) 1–48, http://dx.doi.org/10.1103/RevModPhys.85.1.
    [22]
    Esarey, E., Shadwick, B.A., Catravas, P., Leemans, W.P., Synchrotron radiation from electron beams in plasma-focusing channels, Phys. Rev. E – Stat. Nonlinear Soft Matter Phys. 65 (2002) 1–15, http://dx.doi.org/10.1103/PhysRevE.65.056505.
    [23]
    Rousse, A., Ta Phuoc, K., Shah, R., Pukhov, A., Lefebvre, E., et al., Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction, Phys. Rev. Lett. 93 (2004) 1–4, http://dx.doi.org/10.1103/PhysRevLett.93.135005.
    [24]
    Cipiccia, S., Islam, M.R., Ersfeld, B., Shanks, R.P., Brunetti, E., et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake, Nat. Phys. 7 (2011) 867–871, http://dx.doi.org/10.1038/nphys2090.
    [25]
    Kneip, S., McGuffey, C., Martins, J.L., Martins, S.F., Bellei, C., et al., Bright spatially coherent synchrotron X-rays from a table-top source, Nat. Phys. 6 (2010) 980–983, http://dx.doi.org/10.1038/nphys1789.
    [26]
    Albert, F., Thomas, A.G.R., Mangles, S.P.D., Banerjee, S., Corde, S., et al., Laser wakefield accelerator based light sources: potential applications and requirements, Plasma Phys. Control. Fusion 56 (2014) 84015, http://dx.doi.org/10.1088/0741-3335/56/8/084015.
    [27]
    Wenz, J., Schleede, S., Khrennikov, K., Bech, M., Thibault, P., et al., Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source, Nat. Commun. 6 (2015) 7568, http://dx.doi.org/10.1038/ncomms8568.
    [28]
    Albert, F., Thomas, A.G.R., Applications of laser wakefield accelerator-based light sources, Plasma Phys. Control. Fusion 58 (2016) 103001, http://dx.doi.org/10.1088/0741-3335/58/10/103001.
    [29]
    Yu, C., Qi, R., Wang, W., Liu, J., Li, W., et al., Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering, Sci. Rep. 6 (2016) 29518, http://dx.doi.org/10.1038/srep29518.
    [30]
    Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., et al., Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity, Phys. Rev. Lett. 100 (2008) 1–4, http://dx.doi.org/10.1103/PhysRevLett.100.105006.
    [31]
    Ferri, J., Davoine, X., Kalmykov, S.Y., Lifschitz, A., Electron acceleration and generation of high-brilliance X-ray radiation in kilojoule, subpicosecond laser-plasma interactions, Phys. Rev. Accel. Beams 19 (2016) 101301. http://dx.doi.org/10.1103/PhysRevAccelBeams.19.101301.
    [32]
    Hartemann, F.V., Gibson, D.J., Brown, W.J., Rousse, A., Phuoc, K.T., et al., Compton scattering X-ray sources driven by laser wakefield acceleration, Phys. Rev. Spec. Top. – Accel. Beams 10 (2007) 1–8, http://dx.doi.org/10.1103/PhysRevSTAB.10.011301.
    [33]
    Esarey, E., Ride, S.K., Sprangle, P., Nonlinear Thomson scattering of intense laser pulses from beams and plasmas, Phys. Rev. E 48 (1993) 3003–3021, http://dx.doi.org/10.1103/PhysRevE.48.3003.
    [34]
    Ride, S.K., Esarey, E., Baine, M., Thomson scattering of intense lasers from electron beams at arbitrary interaction angles, Phys. Rev. E 52 (1995) 5425–5442, http://dx.doi.org/10.1103/PhysRevE.52.5425.
    [35]
    Khrennikov, K., Wenz, J., Buck, A., Xu, J., Heigoldt, M., et al., Tunable all-optical quasimonochromatic Thomson X-ray source in the nonlinear regime, Phys. Rev. Lett. 114 (2015) 1–5, http://dx.doi.org/10.1103/PhysRevLett.114.195003.
    [36]
    Powers, N.D., Ghebregziabher, I., Golovin, G., Liu, C., Chen, S., et al., Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source, Nat. Photonics 8 (2013) 28–31, http://dx.doi.org/10.1038/nphoton.2013.314.
    [37]
    Sarri, G., Corvan, D.J., Schumaker, W., Cole, J.M., Di Piazza, A., et al., Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113 (2014) 1–5, http://dx.doi.org/10.1103/PhysRevLett.113.224801.
    [38]
    Ta Phuoc, K., Corde, S., Thaury, C., Malka, V., Tafzi, A., et al., All-optical Compton gamma-ray source, Nat. Photonics 6 (2012) 308–311, http://dx.doi.org/10.1038/nphoton.2012.82.
    [39]
    Tsai, H.E., Wang, X., Shaw, J.M., Li, Z., Arefiev, A.V., et al., Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror, Phys. Plasmas 22 (2015), http://dx.doi.org/10.1063/1.4907655.
    [40]
    Vincenti, H., Monchocé, S., Kahaly, S., Bonnaud, G., Martin, P., et al., Optical properties of relativistic plasma mirrors, Nat. Commun. 5 (2014), 3403. http://dx.doi.org/10.1038/ncomms4403.
    [41]
    Nakatsutsumi, M., Kon, A., Buffechoux, S., Audebert, P., Fuchs, J., et al., Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity, Opt. Lett. 35 (2010) 2314–2316, http://dx.doi.org/10.1364/OL.35.002314.
    [42]
    Di Piazza, A., Müller, C., Hatsagortsyan, K.Z., Keitel, C.H., Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177–1228, http://dx.doi.org/10.1103/RevModPhys.84.1177.
    [43]
    Titov, A.I., Cumulative multi-photon processes in electron-laser Compton scattering, Proc. Sci. (2015) 1–16.
    [44]
    Gao, J., Thomson scattering from ultrashort and ultraintense laser pulses, Phys. Rev. Lett. 93 (2004) 18–21, http://dx.doi.org/10.1103/PhysRevLett.93.243001.
    [45]
    Vais, O.E., Bochkarev, S.G., Bychenkov, V.Y., Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse, Plasma Phys. Rep. 42 (2016) 818–833, http://dx.doi.org/10.1134/S1063780X16090105.
    [46]
    Oguz Er, A., Chen, J., Rentzepis, P.M., Ultrafast time resolved X-ray diffraction, extended X-ray absorption fine structure and X-ray absorption near edge structure, J. Appl. Phys. (2012) 112, http://dx.doi.org/10.1063/1.4738372.
    [47]
    Krol, A., Ikhlef, A., Kieffer, J.C., Bassano, D.A., Chamberlain, C.C., et al., Laser-based microfocused X-ray source for mammography: feasibility study, Med. Phys. 24 (1997) 725–732, http://dx.doi.org/10.1118/1.597993.
    [48]
    Gales, S., Balabanski, D.L., Negoita, F., Tesileanu, O., Ur, C.A., et al., New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams, Phys. Scr. 91 (2016) 93004, http://dx.doi.org/10.1088/0031-8949/91/9/093004.
    [49]
    Chen, L.M., Park, J.J., Hong, K.H., Kim, J.L., Zhang, J., et al., Emission of a hot electron jet from intense femtosecond-laser-cluster interactions, Phys. Rev. E – Stat. Nonlinear Soft Matter Phys. 66 (2002) 17–20, http://dx.doi.org/10.1103/PhysRevE.66.025402.
    [50]
    Jeon, J.H., Nakajima, K., Kim, H.T., Rhee, Y.J., Pathak, V.B., et al., Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters, Phys. Plasmas 23 (2016), http://dx.doi.org/10.1063/1.4956447.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (124) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return