Citation: | Li Minghua, Chen Liming, Li Dazhang, Huang Kai, Li Yifei, Ma Yong, Yan Wenchao, Tao Mengze, Tan Junhao, Sheng Zhengming, Zhang Jie. Collimated gamma rays from laser wakefield accelerated electrons[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.03.002 |
[1] |
Eggl, E., Schleede, S., Bech, M., Achterhold, K., Loewen, R., et al., X-ray phase-contrast tomography with a compact laser-driven synchrotron source, Proc. Natl. Acad. Sci. U.S.A. 112 (2015), http://dx.doi.org/10.1073/pnas.1500938112.
|
[2] |
Achterhold, K., Bech, M., Schleede, S., Potdevin, G., Ruth, R., et al., Monochromatic computed tomography with a compact laser-driven X-ray source, Sci. Rep. 3 (2013) 1313, http://dx.doi.org/10.1038/srep01313.
|
[3] |
Schlenvoigt, H.-P., Haupt, K., Debus, A., Budde, F., Jäckel, O., et al., A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator, Nat. Phys. 4 (2007) 130–133, http://dx.doi.org/10.1038/nphys811.
|
[4] |
Malka, V., Laser plasma accelerators, Phys. Plasmas 55501 (2013), http://dx.doi.org/10.1063/1.3695389.
|
[5] |
Esarey, E., Schroeder, C.B., Leemans, W.P., Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81 (2009), http://dx.doi.org/10.1103/RevModPhys.81.1229.
|
[6] |
Tajima, J.M., Dawson, T., Laser electron accelerator, Phys. Rev. Lett. 43 (1979) 267–270.10.1103/physrevlett.43.267
|
[7] |
Lu, W., Tzoufras, M., Joshi, C., Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Phys. Rev. Accel. Beams 61301 (2007) 1–12, http://dx.doi.org/10.1103/PhysRevSTAB.10.061301.
|
[8] |
Pukhov, A., Meyer-ter-Vehn, J., Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B Lasers Opt. 74 (2002) 355–361, http://dx.doi.org/10.1007/s003400200795.
|
[9] |
Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S.A., et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4 (2013) 1988, http://dx.doi.org/10.1038/ncomms2988.
|
[10] |
Nakamura, K., Geddes, C.G.R., Leemans, W.P., Nagler, B., Gonsalves, A.J., et al., GeV electron beams from a centimetre-scale accelerator, Nat. Phys. 2 (2006) 9–12, http://dx.doi.org/10.1038/nphys418.
|
[11] |
Ding, C., Xiong, W., Fan, T., Hickstein, D.D., Popmintchev, T., et al., High flux coherent super-continuum soft X-ray source driven by a single-stage, 10 mJ, Ti:sapphire amplifier-pumped OPA, Opt. Express 22 (2014) 6194, http://dx.doi.org/10.1364/OE.22.006194.
|
[12] |
Chen, L.M., Kando, M., Xu, M.H., Li, Y.T., Koga, J., et al., Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil, Phys. Rev. Lett. 100 (2008) 1–4, http://dx.doi.org/10.1103/PhysRevLett.100.045004.
|
[13] |
Chen, L.M., Wang, W.M., Kando, M., Hudson, L.T., Liu, F., et al., High contrast femtosecond laser-driven intense hard X-ray source for imaging application, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 619 (2010) 128–132, http://dx.doi.org/10.1016/j.nima.2009.11.048.
|
[14] |
Li, M., Huang, K., Chen, L., Yan, W., Tao, M., et al., Laser-driven powerful kHz hard X-ray source, Radiat. Phys. Chem. (2016) 1–5, http://dx.doi.org/10.1016/j.radphyschem.2016.01.042.
|
[15] |
Glinec, Y., Faure, J., Le Dain, L., Darbon, S., Hosokai, T., et al., High-resolution γ-ray radiography produced by a laser-plasma driven electron source, Phys. Rev. Lett. 94 (2005) 1–4, http://dx.doi.org/10.1103/PhysRevLett.94.025003.
|
[16] |
Chen, L.M., Yan, W.C., Li, D.Z., Hu, Z.D., Zhang, L., et al., Bright betatron X-ray radiation from a laser-driven-clustering gas target, Sci. Rep. 3 (2013) 1912, http://dx.doi.org/10.1038/srep01912.
|
[17] |
Yan, W., Chen, L., Li, D., Zhang, L., Hafz, N.A.M., et al., Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 5825–5830, http://dx.doi.org/10.1073/pnas.1404336111.
|
[18] |
Ma, Y., Chen, L., Li, D., Yan, W., Huang, K., et al., Generation of femtosecond gamma-ray bursts stimulated by laser-driven hosing evolution, Sci. Rep. 6 (2016), http://dx.doi.org/10.1038/srep30491.
|
[19] |
Huang, K., Chen, L.M., Li, Y.F., Li, D.Z., Tao, M.Z., et al., Resonantly Excited Betatron Hard X-rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator, 2015, pp. 1–5. http://dx.doi.org/10.1038/srep27633.
|
[20] |
Jackson, J.D., Classical Electrodynamics, third ed. Wiley, New York, 2001.
|
[21] |
Corde, S., Ta Phuoc, K., Lambert, G., Fitour, R., Malka, V., et al., Femtosecond X rays from laser-plasma accelerators, Rev. Mod. Phys. 85 (2013) 1–48, http://dx.doi.org/10.1103/RevModPhys.85.1.
|
[22] |
Esarey, E., Shadwick, B.A., Catravas, P., Leemans, W.P., Synchrotron radiation from electron beams in plasma-focusing channels, Phys. Rev. E – Stat. Nonlinear Soft Matter Phys. 65 (2002) 1–15, http://dx.doi.org/10.1103/PhysRevE.65.056505.
|
[23] |
Rousse, A., Ta Phuoc, K., Shah, R., Pukhov, A., Lefebvre, E., et al., Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction, Phys. Rev. Lett. 93 (2004) 1–4, http://dx.doi.org/10.1103/PhysRevLett.93.135005.
|
[24] |
Cipiccia, S., Islam, M.R., Ersfeld, B., Shanks, R.P., Brunetti, E., et al., Gamma-rays from harmonically resonant betatron oscillations in a plasma wake, Nat. Phys. 7 (2011) 867–871, http://dx.doi.org/10.1038/nphys2090.
|
[25] |
Kneip, S., McGuffey, C., Martins, J.L., Martins, S.F., Bellei, C., et al., Bright spatially coherent synchrotron X-rays from a table-top source, Nat. Phys. 6 (2010) 980–983, http://dx.doi.org/10.1038/nphys1789.
|
[26] |
Albert, F., Thomas, A.G.R., Mangles, S.P.D., Banerjee, S., Corde, S., et al., Laser wakefield accelerator based light sources: potential applications and requirements, Plasma Phys. Control. Fusion 56 (2014) 84015, http://dx.doi.org/10.1088/0741-3335/56/8/084015.
|
[27] |
Wenz, J., Schleede, S., Khrennikov, K., Bech, M., Thibault, P., et al., Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source, Nat. Commun. 6 (2015) 7568, http://dx.doi.org/10.1038/ncomms8568.
|
[28] |
Albert, F., Thomas, A.G.R., Applications of laser wakefield accelerator-based light sources, Plasma Phys. Control. Fusion 58 (2016) 103001, http://dx.doi.org/10.1088/0741-3335/58/10/103001.
|
[29] |
Yu, C., Qi, R., Wang, W., Liu, J., Li, W., et al., Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering, Sci. Rep. 6 (2016) 29518, http://dx.doi.org/10.1038/srep29518.
|
[30] |
Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., et al., Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity, Phys. Rev. Lett. 100 (2008) 1–4, http://dx.doi.org/10.1103/PhysRevLett.100.105006.
|
[31] |
Ferri, J., Davoine, X., Kalmykov, S.Y., Lifschitz, A., Electron acceleration and generation of high-brilliance X-ray radiation in kilojoule, subpicosecond laser-plasma interactions, Phys. Rev. Accel. Beams 19 (2016) 101301. http://dx.doi.org/10.1103/PhysRevAccelBeams.19.101301.
|
[32] |
Hartemann, F.V., Gibson, D.J., Brown, W.J., Rousse, A., Phuoc, K.T., et al., Compton scattering X-ray sources driven by laser wakefield acceleration, Phys. Rev. Spec. Top. – Accel. Beams 10 (2007) 1–8, http://dx.doi.org/10.1103/PhysRevSTAB.10.011301.
|
[33] |
Esarey, E., Ride, S.K., Sprangle, P., Nonlinear Thomson scattering of intense laser pulses from beams and plasmas, Phys. Rev. E 48 (1993) 3003–3021, http://dx.doi.org/10.1103/PhysRevE.48.3003.
|
[34] |
Ride, S.K., Esarey, E., Baine, M., Thomson scattering of intense lasers from electron beams at arbitrary interaction angles, Phys. Rev. E 52 (1995) 5425–5442, http://dx.doi.org/10.1103/PhysRevE.52.5425.
|
[35] |
Khrennikov, K., Wenz, J., Buck, A., Xu, J., Heigoldt, M., et al., Tunable all-optical quasimonochromatic Thomson X-ray source in the nonlinear regime, Phys. Rev. Lett. 114 (2015) 1–5, http://dx.doi.org/10.1103/PhysRevLett.114.195003.
|
[36] |
Powers, N.D., Ghebregziabher, I., Golovin, G., Liu, C., Chen, S., et al., Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source, Nat. Photonics 8 (2013) 28–31, http://dx.doi.org/10.1038/nphoton.2013.314.
|
[37] |
Sarri, G., Corvan, D.J., Schumaker, W., Cole, J.M., Di Piazza, A., et al., Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113 (2014) 1–5, http://dx.doi.org/10.1103/PhysRevLett.113.224801.
|
[38] |
Ta Phuoc, K., Corde, S., Thaury, C., Malka, V., Tafzi, A., et al., All-optical Compton gamma-ray source, Nat. Photonics 6 (2012) 308–311, http://dx.doi.org/10.1038/nphoton.2012.82.
|
[39] |
Tsai, H.E., Wang, X., Shaw, J.M., Li, Z., Arefiev, A.V., et al., Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror, Phys. Plasmas 22 (2015), http://dx.doi.org/10.1063/1.4907655.
|
[40] |
Vincenti, H., Monchocé, S., Kahaly, S., Bonnaud, G., Martin, P., et al., Optical properties of relativistic plasma mirrors, Nat. Commun. 5 (2014), 3403. http://dx.doi.org/10.1038/ncomms4403.
|
[41] |
Nakatsutsumi, M., Kon, A., Buffechoux, S., Audebert, P., Fuchs, J., et al., Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity, Opt. Lett. 35 (2010) 2314–2316, http://dx.doi.org/10.1364/OL.35.002314.
|
[42] |
Di Piazza, A., Müller, C., Hatsagortsyan, K.Z., Keitel, C.H., Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177–1228, http://dx.doi.org/10.1103/RevModPhys.84.1177.
|
[43] |
Titov, A.I., Cumulative multi-photon processes in electron-laser Compton scattering, Proc. Sci. (2015) 1–16.
|
[44] |
Gao, J., Thomson scattering from ultrashort and ultraintense laser pulses, Phys. Rev. Lett. 93 (2004) 18–21, http://dx.doi.org/10.1103/PhysRevLett.93.243001.
|
[45] |
Vais, O.E., Bochkarev, S.G., Bychenkov, V.Y., Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse, Plasma Phys. Rep. 42 (2016) 818–833, http://dx.doi.org/10.1134/S1063780X16090105.
|
[46] |
Oguz Er, A., Chen, J., Rentzepis, P.M., Ultrafast time resolved X-ray diffraction, extended X-ray absorption fine structure and X-ray absorption near edge structure, J. Appl. Phys. (2012) 112, http://dx.doi.org/10.1063/1.4738372.
|
[47] |
Krol, A., Ikhlef, A., Kieffer, J.C., Bassano, D.A., Chamberlain, C.C., et al., Laser-based microfocused X-ray source for mammography: feasibility study, Med. Phys. 24 (1997) 725–732, http://dx.doi.org/10.1118/1.597993.
|
[48] |
Gales, S., Balabanski, D.L., Negoita, F., Tesileanu, O., Ur, C.A., et al., New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams, Phys. Scr. 91 (2016) 93004, http://dx.doi.org/10.1088/0031-8949/91/9/093004.
|
[49] |
Chen, L.M., Park, J.J., Hong, K.H., Kim, J.L., Zhang, J., et al., Emission of a hot electron jet from intense femtosecond-laser-cluster interactions, Phys. Rev. E – Stat. Nonlinear Soft Matter Phys. 66 (2002) 17–20, http://dx.doi.org/10.1103/PhysRevE.66.025402.
|
[50] |
Jeon, J.H., Nakajima, K., Kim, H.T., Rhee, Y.J., Pathak, V.B., et al., Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters, Phys. Plasmas 23 (2016), http://dx.doi.org/10.1063/1.4956447.
|