Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
Pikuz T., Faenov A., Ozaki N., Matsuoka T., Albertazzi B., Hartley N.J., Miyanishi K., Katagiri K., Matsuyama S., Yamauchi K., Habara H., Inubushi Y., Togashi T., Yumoto H., Ohashi H., Tange Y., Yabuuchi T., Yabashi M., Grum-Grzhimailo A.N., Casner A., Skobelev I., Makarov S., Pikuz S., Rigon G., Koenig M., Tanaka K.A., Ishikawa T., Kodama R.. Development of new diagnostics based on LiF detector for pump-probe experiments[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.01.006
Citation: Pikuz T., Faenov A., Ozaki N., Matsuoka T., Albertazzi B., Hartley N.J., Miyanishi K., Katagiri K., Matsuyama S., Yamauchi K., Habara H., Inubushi Y., Togashi T., Yumoto H., Ohashi H., Tange Y., Yabuuchi T., Yabashi M., Grum-Grzhimailo A.N., Casner A., Skobelev I., Makarov S., Pikuz S., Rigon G., Koenig M., Tanaka K.A., Ishikawa T., Kodama R.. Development of new diagnostics based on LiF detector for pump-probe experiments[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.01.006

Development of new diagnostics based on LiF detector for pump-probe experiments

doi: 10.1016/j.mre.2018.01.006
More Information
  • Corresponding author: *Corresponding author. Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan. E-mail address: pikuz-tatiana@gmail.com (T. Pikuz).
  • Received Date: 2017-07-20
  • Accepted Date: 2018-01-08
  • Available Online: 2021-12-07
  • Publish Date: 2018-07-15
  • We present new diagnostics for use in optical laser pump - X-ray Free Electron Laser (XFEL) probe experiments to monitor dimensions, intensity profile and focusability of the XFEL beam and to control initial quality and homogeneity of targets to be driven by optical laser pulse. By developing X-ray imaging, based on the use of an LiF crystal detector, we were able to measure the distribution of energy inside a hard X-ray beam with unprecedented high spatial resolution (∼1 μm) and across a field of view larger than some millimetres. This diagnostic can be used in situ, provides a very high dynamic range, has an extremely limited cost, and is relatively easy to be implemented in pump-probe experiments. The proposed methods were successfully applied in pump-probe experiments at the SPring-8 Angstrom Compact free electron LAser (SACLA) XFEL facility and its potential was demonstrated for current and future High Energy Density Science experiments.
  • loading
  • [1]
    D. Milathianaki, S. Boutet, G.J. Williams, A. Higginbotham, D. Ratner, et al., Femtosecond visualization of lattice dynamics in shock-compressed matter, Science 342 (2013) 220–223.10.1126/science.1239566
    [2]
    J. Gaudin, C. Fourment, B.I. Cho, K. Engelhorn, E. Galtier, et al., Towards simultaneous measurements of electronic and structural properties in ultra-fast X-ray free electron laser absorption spectroscopy experiments, Sci. Rep. 4 (2014) 4724.10.1038/srep04724
    [3]
    C.R.D. Brown, D.O. Gericke, M. Cammarata, B.I. Cho, T. Döppner, et al., Evidence for a glassy state in strongly driven carbon, Sci. Rep. 4 (2014) 5214.10.1038/srep05214
    [4]
    B. Albertazzi, N. Ozaki, V. Zhakhovsky, A. Faenov, H. Habara, et al., Dynamic fracture of tantalum under extreme tensile stress, Sci. Adv. 3 (2017) e1602705.10.1126/sciadv.1602705
    [5]
    B.K. McFarland, N. Berrah, C. Bostedt, J. Bozek, P.H. Bucksbaum, et al., Experimental strategies for optical pump-soft X-ray probe experiments at the LCLS, J. Phys.: Conf. Ser. 488 (2014) 012015.10.1088/1742-6596/488/1/012015
    [6]
    S. de Jong, R. Kukreja, C. Trabant, N. Pontius, C.F. Chang, et al., Speed limit of the insulator–metal transition in magnetite, Nat. Mater. 12 (2013) 882–886.10.1038/nmat3718
    [7]
    N.J. Hartley, N. Ozaki, T. Matsuoka, B. Albertazzi, A. Faenov, et al., Ultrafast observation of lattice dynamics in laser-irradiated gold foils, Appl. Phys. Lett. 110 (2017) 071905.10.1063/1.4976541
    [8]
    M. Yabashi, H. Tanaka, T. Ishikawa, Overview of the SACLA facility, J. Synchrotron Radiat. 22 (2015) 477–484.10.1107/s1600577515004658
    [9]
    A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, et al., Full spatial characterization of a nanofocused X-ray free-electron laser beam by ptychographic imaging, Sci. Rep. 3 (2013) 1633. www.nature.comientificreport.10.1038/srep01633
    [10]
    S. Matsuyama, H. Yokoyama, R. Fukui, Y. Kohmura, K. Tamasaku, et al., Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry, Opt. Express 20 (2012) 24977–24986.10.1364/oe.20.024977
    [11]
    J. Chalupský, P. Boháček, T. Burian, V. Hájková, S.P. Hau-Riege, et al., Imprinting a focused X-ray laser beam to measure its full spatial characteristics, Phys. Rev. Appl. 4 (2015) 014004.10.1103/physrevapplied.4.014004
    [12]
    B. Floter, P. Juranic, P. Großmann, S. Kapitzki, B. Keitel, et al., Beam parameters of FLASH beamline BL1 from Hartmann wavefront measurements, Nucl. Instrum. Methods Phys. Res., Sect. A 635 (2011) S108–S112.10.1016/j.nima.2010.10.016
    [13]
    J.H. Schulman, W.D. Compton, Color Centers in Solids, Oxford, Pergamon, 1962.
    [14]
    G. Baldacchini, F. Bongfigli, F. Flora, R.M. Montereali, D. Murra, et al., High-contrast photoluminiscent patterns in lithium fluoride crystals produced by soft X-rays from a laser-plasma source, Appl. Phys. Lett. 80 (2002) 4810–4812.10.1063/1.1486476
    [15]
    G. Baldacchini, F. Bongfigli, A. Faenov, F. Flora, R.M. Montereali, et al., Lithium fluoride as a novel X-ray image detector for biological μ-world capture, J. Nanosci. Nanotechnol. 3 (2003) 483–486.10.1166/jnn.2003.023
    [16]
    G. Baldacchini, S. Bollanti, F. Bonfigli, F. Flora, P. Di Lazzaro, et al., Soft X-ray submicron imaging detectors based on point defects in LiF, Rev. Sci. Instrum. 76 (2005) 113104.10.1063/1.2130930
    [17]
    A. Ustione, A. Cricenti, F. Bonfigli, F. Flora, A. Lai, et al., Scanning near-field optical microscopy images of microradiographs stored in lithium fluoride films with an optical resolution of λ/12, Appl. Phys. Lett. 88 (2006) 141107.10.1063/1.2193654
    [18]
    A. Ya. Faenov, Y. Kato, M. Tanaka, T.A. Pikuz, M. Kishimoto, et al., Submicrometer-resolution in situ imaging of the focus pattern of a soft X-ray laser by color center formation in LiF crystal, Opt. Lett. 34 (2009) 941–943.10.1364/ol.34.000941
    [19]
    T. Pikuz, A. Faenov, Y. Fukuda, M. Kando, P. Bolton, et al., Optical features of a LiF crystal soft X-ray imaging detector irradiated by free electron laser pulses, Opt. Express 20 (4) (2012) 3424–3433.10.1364/oe.20.003424
    [20]
    T.A. Pikuz, A. Ya. Faenov, Y. Fukuda, M. Kando, P. Bolton, et al., Soft X-ray Free-Electron Laser imaging by LiF crystal and film detectors over a wide range of fluences, Appl. Opt. 52 (2013) 509–515.10.1364/ao.52.000509
    [21]
    T. Pikuz, A. Faenov, T. Matsuoka, S. Matsuyama, K. Yamauchi, et al., 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector, Sci. Rep. 5 (2015) 17713.10.1038/srep17713
    [22]
    A.N. Grum-Grzhimailo, T. Pikuz, A. Faenov, T. Matsuoka, N. Ozaki, et al., On the size of the secondary electron cloud in crystals irradiated by hard X-ray photons, Eur. Phys. J. D 71 (2017) 69.10.1140/epjd/e2017-70767-8
    [23]
    M. Ruiz-Lopez, A. Faenov, T. Pikuz, N. Ozaki, A. Mitrofanov, et al., Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis, J. Synchrotron Radiat. 24 (2017) 196–204.10.1107/s1600577516016568
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (229) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return