Citation: | Li Xiaojia, Xiao Tingting, Chen Fengwei, Zhang Yingjuan, Li Xiaofei, Wu Weidong. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2018.01.004 |
[1] |
R.
Betti, V.N.
Goncharov, R.L.
McCrory, P.
Sorotokin, C.P.
Verdon, Self-consistent stability
analysis of ablation fronts in inertial confinement fusion,
Phys. Plasmas
3 (1996) 2122.10.1063/1.871664
|
[2] |
V.N.
Goncharov, R.
Betti, R.L.
McCrory, P.
Sorotokin, C.P.
Verdon, Self-consistent stability
analysis of ablation fronts with large Froude numbers, Phys.
Plasmas
3 (1996) 1402.10.1063/1.871730
|
[3] |
K.
Lan, J.
Liu, X.T.
He, W.D.
Zheng, D.X.
Lai, 2014, High flux
symmetry of the spherical hohlraum with octahedral 6 LEHs at the hohlraum-to-capsule
radius ratio of 5.14, Phys. Plasmas
21 (2014) 010704.10.1063/1.4863435
|
[4] |
W.
Huo, Z.
Li, Y.
Chen, X.
Xie, K.
Lan, et al., First
investigation on the radiation field of the spherical hohlraum,
Phys. Rev. Lett.
117 (2016) 025002.10.1103/physrevlett.117.025002
|
[5] |
C.R.
Weber, D.T.
Casey, D.S.
Clark, B.A.
Hammel, A.
MacPhee, et al., Improving
ICF implosion performance with alternative capsule supports,
Phys. Plasmas
24 (2017) 056302.10.1063/1.4977536
|
[6] |
P.E.
Coyle (Ed.), Laser Program Annual
Report, vol. 4 (1996) p. 181.
|
[7] |
D.A.
Glocker, A proposed design for
multishell cryogenic laser fusion targets using superconducting
levitation, Appl. Phys. Lett.
39 (1981) 478.10.1063/1.92780
|
[8] |
Y.
Ishigaki, H.
Ueda, K.
Agatsuma, A.
Ishiyama, Accurate position control of
active magnetic levitation using sphere-shaped HTS bulk for inertial nuclear
fusion, IEEE Trans. Appl. Supercond.
19 (2009) 3.10.1109/tasc.2009.2017898
|
[9] |
T.
Wang, H.
Ueda, K.
Agatsuma, A.
Ishiyama, Evaluation of positional
stability in active magnetic levitation using spherical HTS bulk for inertial nuclear
fusion, IEEE Trans. Appl. Supercond.
21 (2011) 3.10.1109/tasc.2010.2098383
|
[10] |
H.
Yoshida, K.
Katakami, Y.
Sakagami, Magnetic suspension of a
pellet for inertial confinement fusion, Laser Part.
Beams
11 (1993) 455.10.1017/s0263034600005048
|
[11] |
E.R.
Koresheva, I.V.
Aleksandrova, O.M.
Ivanenko, V.A.
Kalabukhov, E.L.
Koshelev, et al., HTSC
maglev systems for IFE target transport applications, J. Russ.
Laser Res.
35 (2014) 151.10.1007/s10946-014-9410-y
|
[12] |
J.
Nagamatsu, N.
Nakagawa, T.
Muranaka, Y.
Zenitani, J.
Akimitsu, Superconductivity at 39 K in
magnesium diboride, Nature
410 (2001) 63.10.1038/35065039
|
[13] |
M.
Eisterer, Magnetic properties and
critical currents of MgB2, Supercond. Sci. Technol.
20 (2007) 47. Topical Review.10.1088/0953-2048/20/12/r01
|
[14] |
J.
Gu, Z.
Dai, S.
Zou, W.
Ye, W.
Zheng, et al., Effects of
mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator
roughness on ignition capsule implosions, Matter Radiat.
Extrem.
2 (2017) 9.10.1016/j.mre.2016.09.002
|
[15] |
S.P.
Regan, R.
Epstein, B.A.
Hammel, L.J.
Suter, H.A.
Scott, et al., Hot-spot mix
in ignition-scale inertial confinement fusion targets, Phys.
Rev. Lett.
111 (2013) 045001.10.1103/physrevlett.111.045001
|