Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Deutsch Claude, Maynard Gilles. Ion stopping in dense plasmas: A basic physics approach[J]. Matter and Radiation at Extremes, 2016, 1(6). doi: 10.1016/j.mre.2016.11.004
Citation: Deutsch Claude, Maynard Gilles. Ion stopping in dense plasmas: A basic physics approach[J]. Matter and Radiation at Extremes, 2016, 1(6). doi: 10.1016/j.mre.2016.11.004

Ion stopping in dense plasmas: A basic physics approach

doi: 10.1016/j.mre.2016.11.004
More Information
  • Corresponding author: *Corresponding author. E-mail address: claude.deutsch@u-psud.fr (C. Deutsch).
  • Received Date: 2016-06-01
  • Accepted Date: 2016-10-13
  • Publish Date: 2015-11-15
  • We survey quite extensively the present research status of ion-stopping in dense plasmas of potential importance for initial confinement fusion (ICF) driven by intense and heavy ion beams, and also for warm dense matter (WDM). First, we put emphasis on every possible mechanism involved in the shaping of the ion projectile effective charge, while losing energy in a target plasma with classical ions and partially degenerate electrons.Then, we switch to ion stopping by target bound electrons, taking detailed account of mean excitation energies. Free electron stopping has already been given a lot of attention in former works [C. Deutsch et al., Recent Res. Devel. Plasma 1 (2000) 1–23; Open Plasma Phys. J. 3 (2010) 88–115]. Then, we extend the usual standard stopping model (SSM) framework to nonlinear stopping including a treatment of the Z3 Barkas effect and a confronting comparison of Bloch and Bohr Coulomb logarithms.Finally, we document low velocity ion slowing down (LVISD) in single ion plasmas as well as in binary ionic mixtures (BIM), in connection with specific ICF fuels.
  • loading
  • [1]
    C. Deutsch, G. Maynard, Stopping of pointlike charges in a dense electron fluid, Recent Res. Devel. Plasmas 1 (2000) 1–23.
    [2]
    C. Deutsch, G. Maynard, M. Chabot, D. Gardes, S. Della-Negra, et al., Ion Stopping in dense plasma target for high energy density physics, Open Plasma Phys. J. 3 (2010) 88–115.
    [3]
    R.O. Bangerter, Targets for heavy ion fusion, Fus. Technol. 13 (1988) 348–355;10.13182/fst88-a25109
    [4]
    H.D. Betz, Ion projectile effective charge in, Appl. At. Coll. Phys. 4 (1984) 1–42.
    [5]
    D.S. Bailey, Y.T. Lee, R.M. More, Ab initio calculations of the charge state of a fast heavy ion stopping in a finite temperature target, J. Phys. (Paris) 44 (C8) (1983) 149–158.10.1051/jphyscol:1983810
    [6]
    E. Nardi, Z. Zinamon, Charge state and slowing of fast in plasmas, Phys. Rev. Lett. 49 (1982) 1251–1254;10.1103/physrevlett.49.1251
    [7]
    G.I. Bell, The capture and loss of electrons by fission fragments, Phys. Rev. 90 (1953) 548–557.10.1103/physrev.90.548
    [8]
    Th. Peter, J. Meyer-Ter-Vehn, Energy loss of heavy ions in dense plasma. II Nonequilibrium charge states and stopping powers, Phys. Rev. A 43 (1991) 2015–2030.10.1103/physreva.43.2015
    [9]
    M. Gryzinski, Two-particle collisions. I. General relations for collisions in the laboratory system, Phys. Rev. 138, (1965) A305–32110.1103/PhysRev.138.A305;
    [10]
    W. Lotz, An empirical formula for the electron-impact ionization cross-section, Zeitschrift für Physik A Hadrons and Nuclei 206 (1967) 205–211.10.1007/bf01325928
    [11]
    Ya. B. Zel’Dovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 1, Academic Press, New-York, 1966, p. 406.
    [12]
    D.H. Menzel, The physical processes in gaseous nebulae 1. Absorption and emission radiation, Astrophys. J. 85 (1937) 330–339;
    [13]
    J.R. Oppenheimer, On the quantum theory of the capture of electrons, Phys. Rev. 31 (1928) 349–35610.1103/physrev.31.349;
    [14]
    G. Maynard, W. Andre, M. Chabot, C. Deutsch, C. Fleurier, et al., Charge evolution of swift heavy ions in fusion plasmas, Nuo. Cim. 106A (1993) 1825–1993.10.1007/bf02780584
    [15]
    Th. Peter, R. Arnold, J. Meyer-Ter-Vehn, Influence of dielectronic recombination on fast ion charge states in a plasma, Phys. Rev. Lett. 57 (1986) 1859–1862.10.1103/physrevlett.57.1859
    [16]
    V.L. Jacobs, J. Davis, P.C. Kepple, P. Blaha, The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium, Astrophys. J. 211 (1977) 605–616.10.1086/154970
    [17]
    G. Maynard, C. Deutsch, Dynamical effect and dielectronic recombination of fast heavy ions in a plasma, Phys. Scr. 48 (1993) 471–473.10.1088/0031-8949/48/4/015
    [18]
    G. Maynard, C. Deutsch, P. Fromy, K. Katsonis, Atomic physics for inertial fusion using average correlated hydrogenic atom model, Laser Part. Beams 13 (1995) 271–279.10.1017/s0263034600009381
    [19]
    H.D. Betz, L. Grodzins, Charge states and excitation of fast heavy ions passing trhough solids : A new model for the density effect, Phys. Rev. Lett. 25 (1970) 211–214.10.1103/physrevlett.25.211
    [20]
    C. Couillaud, R. Deicas, Ph. Nardin, M.A. Beuve, J.M. Guihaume, et al., Ionization and stopping of heavy ions in dense laser-ablated plasmas, Phys. Rev. E49 (1994) 1545–1562.10.1103/physreve.49.1545
    [21]
    M.H. Chen, Relativistic intermediate-coupling calculations of dielectronic-recombination coefficients for the Li isoelectronic sequence, Phys. Rev. A 44 (1991) 4215–4223.10.1103/physreva.44.4215
    [22]
    Th Peter, R. Arnold, J. Meyer-Ter-Vehn, Private Communication, 1985.
    [23]
    C.L. Pekeris, 11S and 23S states of helium, Phys. Rev. 115 (1959) 1216–1221.10.1103/physrev.115.1216
    [24]
    A. Dalgarno, The stopping powers of atoms, Proc. Phys. Soc. 76 (1960) 422.10.1088/0370-1328/76/3/417
    [25]
    U. Fano, J.W. Cooper, Spectral distribution of atomic oscillator strengths, Rev. Mod. 40 (1968) 441–50710.1103/revmodphys.40.441;
    [26]
    I. Shimamura, T. Watanabe, Bounds on mean excitation Energies, lamb-shift, stopping power, straggling and grazzing collision of high charged particles, J. Phys. Soc. Jap. 34 (1973) 483.10.1143/jpsj.34.483
    [27]
    J.L. Dehmer, M. Inokuti, R.P. Saxon, Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second rows, Phys. Rev. A 12 (1975) 102–121.10.1103/physreva.12.102
    [28]
    A.E.S. Green, D.L. Sellin, A.S. Zachor, Analytic independent-particle model for atoms, Phys. Rev. 184 (1969) 1–910.1103/physrev.184.1;
    [29]
    X. Garbet, C. Deutsch, G. Maynard, Mean excitation energies for ions in gases and plasmas, J. Appl. Phys. 61 (1987) 907–916.10.1063/1.338141
    [30]
    J.H. Peek, L.C. Pitchford, E.J. Shipsey, Methods for predicting stopping and straggling mean excitation energies, Phys. Rev. A 29 (1984) 1096–1102.10.1103/physreva.29.1096
    [31]
    J. Bell, D.R.B. Bish, P.E. Gill, Separate subshell contribution to the stopping power of rare gases, J. Phys. B5 (1972) 476–482.10.1088/0022-3700/5/3/012
    [32]
    B.F. Rozsnayi, Relativistic Hartree-Fock-Slater calculations for arbitrary temperature and matter density, Phys. Rev. A5 (1972) 1137–1149.10.1103/physreva.5.1137
    [33]
    D.A. Liberman, D.T. Cromes, J.T. Waber, Average atom models in dense plasmas, Compt. Phys. Comm. 2 (1971) 107.10.1016/0010-4655(71)90020-8
    [34]
    J. Lindhard, M. Scharff, Energy loss in matter by fast particles of low charge, Dan. Vidensk. Selsk. Math. Fys. Medd. 27 (15) (1953) 1–31.
    [35]
    R.E. Johnson, M. Inokuti, The local plasma approximation to the oscillation strength spectrum: How good is it and why? Comm. At. Mol. Phys. 14 (1983) 19–31.
    [36]
    T.A. Mehlhorn, A finite material temperature model for ion energy deposition in ion-driven inertial confinement fusion targets, J. Appl. Phys. 52 (1981) 65226532.10.1063/1.328602
    [37]
    C. Deutsch, G. Maynard, H. Minoo, Ion stopping in dense plasmas, Laser Interact. Relat. Plasma Phenom. 6 (1984) 1029–1048;10.1007/978-1-4615-7332-6_62
    [38]
    F.I. McGuire, J.M. Peek, C.L. Pitchford, Proton stopping power of aluminium ions, Phys. Rev. A26 (1982) 1318–1325.10.1103/physreva.26.1318
    [39]
    S.P. Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles, Rev. Mod. Phys. 52 (1980) 121–173.10.1103/revmodphys.52.121
    [40]
    N. Bohr, The penetration of atomic particles through matter, Kgl. Dan. Vidensk. Selsk. Mat. Phys. Medd. 18 (1948) N8.
    [41]
    G. Maynard, C. Deutsch, The Barkas effect or ZP3-contributions to stopping of swift charged particles, J. Phys., Lett. 43 (1982) 223–227.10.1051/jphyslet:01982004307022300
    [42]
    J.D. Jackson, R.L. McCarthy, .ZP3 connection to energy loss and range, Phys. Rev. B 6 (1972) 4131–4141;10.1103/physrevb.6.4131
    [43]
    C. Deutsch, S. Klarsfeld, Quadrupole electron broadening of neutral lines in a plasma, Phys. Rev. A 7 (1973) 2081–2086.10.1103/physreva.7.2081
    [44]
    J. Lindhard, The Barkas effect or ZP3ZP4corrections to stopping of swift charged, Nucl. Instrum. Methods 132 (1976) 1–5.10.1016/0029-554x(76)90702-3
    [45]
    J. Lindhard, M. Scharff, H.E. Schioett, Range concepts and heavy ion ranges. Notes on atomic collisions II, Kgl. Dan. Vidensk. Selbsh. Mat. Fys. Medd. 33 (39) (1963) 1–42.
    [46]
    X. Garbet, Charged Particle Stopping by Bound Electrons in a Plasma, Report L.P., N vol. 209, Université Paris XI, Orsay, 1984.
    [47]
    H.H. Andersen, J.F. Ziegler, Stopping and Ranges of Ions in Matter, Pergamon, New-York, 1977.
    [48]
    B. Tashev, F. Baimbetov, C. Deutsch, P. Fromy, Low velocity ion stopping in binary mixtures, Phys. Plasmas 15 (2008) 102701.10.1063/1.2988337
    [49]
    See for instance A. Ortner, A. Franck, A. Blazevic, M. Roth, Role of charge transfer in heavy-ion-beam-plasma interactions at intermediate energies, Phys. Rev. E 91 (2015) 023104.10.1103/PhysRevE.91.023104
    [50]
    C. Deutsch, R. Popoff, Low ion-velocity slowing down in a strongly magnatized plasma target, Phys. Rev. E 78 (2008) 056405.10.1103/physreve.78.056405
    [51]
    C. Deutsch, N.A. Tahir, Fragmentation and stopping of heavy cluster ions in a lithium target-Application to target implosion, Phys. Fluids B 4 (1992) 3735–3746;10.1063/1.860329
    [52]
    Z. Wang, Bin He, Z.G. Fu, P. Zhang, Energy relaxation of multi-MeV protons travelling in compressed DT + Be plasmas, Phys. Plasmas 21 (7) (2014) 072703.10.1063/1.4886357
    [53]
    H.B. Nersisyan, C. Deutsch, Stopping of ions in a plasma irradiated by an intense laser field, Laser Part. Beams 29 (2011) 389–397.10.1017/s0263034611000486
    [54]
    B. Yu Sharkov, D.H.H. Hoffmann, A.A. Golubev, Y.T. Zhao, High energy density physics with intense ion beams, Matter Radiat. Extrem. 1 (2016) 28–47.10.1016/j.mre.2016.01.002
    [55]
    J.A. Frenje, P.E. Grabowski, C.K. Li, F.H. Seguin, A.B. Zylstra, et al., Measurements of ion stopping around the Bragg peak in high-energy-density plasmas, Phys. Rev. Lett 115 (2015) 205001–205005.10.1103/physrevlett.115.205001
    [56]
    A.B. Zylstra, J.A. Frenje, P.E. Grabowski, C.K. Li, G.W. Collins, et al., Measurement of charged-particle stopping in warm dense plasma, Phys. Rev. Lett 114 (2015) 215002–215006.10.1103/physrevlett.114.215002
    [57]
    G. Maynard, C. Deutsch, Energy loss and straggling at any velocity of swift ions in dense matter, Phys. Rev. A 26 (1982) 665–668;10.1103/physreva.26.665
    [58]
    S.N. Chen, C. Deutsch, S. Atzeni, M. Gauthier, J. Fuchs, EPS – 2015 Lisboa and to be published.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(6)

    Article Metrics

    Article views (729) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return