Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
Honrubia J.J., Morace A., Murakami M.. On intense proton beam generation and transport in hollow cones[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.11.001
Citation: Honrubia J.J., Morace A., Murakami M.. On intense proton beam generation and transport in hollow cones[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.11.001

On intense proton beam generation and transport in hollow cones

doi: 10.1016/j.mre.2016.11.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: javier.honrubia@upm.es (J.J. Honrubia).
  • Received Date: 2016-10-14
  • Accepted Date: 2016-11-08
  • Publish Date: 2017-01-15
  • Proton generation, transport and interaction with hollow cone targets are investigated by means of two-dimensional PIC simulations. A scaled-down hollow cone with gold walls, a carbon tip and a curved hydrogen foil inside the cone has been considered. Proton acceleration is driven by a 1020 W·cm−2 and 1 ps laser pulse focused on the hydrogen foil. Simulations show an important surface current at the cone walls which generates a magnetic field. This magnetic field is dragged by the quasi-neutral plasma formed by fast protons and co-moving electrons when they propagate towards the cone tip. As a result, a tens of kT Bz field is set up at the cone tip, which is strong enough to deflect the protons and increase the beam divergence substantially. We propose using heavy materials at the cone tip and increasing the laser intensity in order to mitigate magnetic field generation and proton beam divergence.
  • loading
  • [1]
    U. Linz, J. Alonso, What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev. Spec. Top.--Accel. Beams 10 (2007) 094801, 10.1103/PhysRevSTAB.10.094801.
    [2]
    S. Palaniyappan, C. Huang, D.C. Gautier, C.E. Hamilton, M.A. Santiago, et al., Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas, Nat. Commun. 6 (2015), 10.1038/ncomms10170.
    [3]
    M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1 (1994) 1626, 10.1063/1.870664.
    [4]
    M. Tabak, D. Callahan-Miller, Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams, Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 75, 10.1016/S0168-9002(98)00371-4.
    [5]
    R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, et al., Intense high-energy proton beams from petawatt-laser irradiation of solids, Phys. Rev. Lett. 85 (2000) 2945, 10.1103/PhysRevLett.85.2945.
    [6]
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436, 10.1103/PhysRevLett.86.436.
    [7]
    P. Mora, Plasma expansion into a vacuum, Phys. Rev. Lett. 90 (2003) 185002, 10.1103/PhysRevLett.90.185002.
    [8]
    M. Murakami, M.M. Basko, Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: Relation to the problem of ion acceleration, Phys. Plasmas 13 (2006) 012105, 10.1063/1.2162527.
    [9]
    S. Hatchett, O.S. Jones, M. Tabak, R.E. Turner, R.B. Stephens, Cone-focused fast ignition: Sub-ignition proof-of-principle experiments, in: M. Key (Ed.), Contribution to the 6th Workshop on Fast Ignition of Fusion Targets, 16–19 November 2002, St. Petes Beach, Florida, USA, 2002.
    [10]
    S. Atzeni, M. Temporal, J.J. Honrubia, A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons, Nucl. Fusion 42 (2002) L1, 10.1088/0029-5515/42/3/101.
    [11]
    M. Temporal, J.J. Honrubia, S. Atzeni, Numerical study of fast ignition of ablatively imploded deuteriumtritium fusion capsules by ultra-intense proton beams, Phys. Plasmas 9 (2002) 3098, 10.1063/1.1482375.
    [12]
    M. Temporal, Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams, Phys. Plasmas 13 (2006) 122704, 10.1063/1.2400592.
    [13]
    M. Temporal, J.J. Honrubia, S. Atzeni, Proton-beam driven fast ignition of inertially confined fuels: Reduction of the ignition energy by the use of two proton beams with radially shaped profiles, Phys. Plasmas 15 (2008) 052702, 10.1063/1.2918316.
    [14]
    J.J. Honrubia, J.C. Fernández, B.M. Hegelich, M. Murakami, C.D. Enriquez, Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array, Laser Part. Beams 32 (2014) 419, 10.1017/S0263034614000305.
    [15]
    J.C. Fernández, J.J. Honrubia, B.J. Albright, K.A. Flippo, D.C. Gautier, et al., Progress and prospects of ion-driven fast ignition, Nucl. Fusion 49 (2009) 065004, 10.1088/0029-5515/49/6/065004.
    [16]
    J.J. Honrubia, J.C. Fernández, M. Temporal, B.M. Hegelich, J. Meyer-ter-Vehn, Fast ignition of inertial fusion targets by laser-driven carbon beams, Phys. Plasmas 16 (2009) 102701, 10.1063/1.3234248.
    [17]
    C.M. Brenner, A.P.L. Robinson, K. Markey, R.H.H. Scott, R.J. Gray, et al., High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets, Appl. Phys. Lett. 104 (2014) 081123, 10.1063/1.4865812.
    [18]
    J.C. Fernández, B.J. Albright, F.N. Beg, M.E. Foord, B.M. Hegelich, et al., Fast ignition with laser-driven proton and ion beams, Nucl. Fusion 54 (2014) 054006, 10.1088/0029-5515/54/5/054006.
    [19]
    J.J. Honrubia, M. Murakami, Ion beam requirements for fast ignition of inertial fusion targets, Phys. Plasmas 22 (2015) 012703, 10.1063/1.4905904.
    [20]
    J. Kim, B. Qiao, C. McGuffey, M.S. Wei, P.E. Grabowski, et al., Self-consistent simulation of transport and energy deposition of intense laser-accelerated proton beams in solid-density matter, Phys. Rev. Lett. 115 (2015) 054801, 10.1103/PhysRevLett.115.054801.
    [21]
    P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, et al., Isochoric heating of solid-density matter with an ultrafast proton beam, Phys. Rev. Lett. 91 (2008) 125004, 10.1103/PhysRevLett.91.125004.
    [22]
    M.H. Key, Status of and prospects for the fast ignition inertial fusion concept, Phys. Plasmas 14 (2007) 055502, 10.1063/1.2719178.
    [23]
    M. Schollmeier, S. Becker, M. Geissel, K.A. Flippo, A. Blazevic, et al., Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices, Phys. Rev. Lett. 101 (2008) 055004, 10.1103/PhysRevLett.101.055004.
    [24]
    K. Harres, I. Alber, A. Tauschwitz, V. Bagnoud, H. Daido, et al., Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field, Phys. Plasmas 17 (2010) 023107, 10.1063/1.3299391.
    [25]
    I. Hofmann, J. Meyer-ter-Vehn, X. Yan, A. Orzhekhovskaya, S. Yaramyshev, Collection and focusing of laser accelerated ion beams for therapy applications, Phys. Rev. Spec. Top.--Accel. Beams 14 (2011) 031304, 10.1103/PhysRevSTAB.14.031304.
    [26]
    T. Toncian, M. Borghesi, J. Fuchs, E. d'Humières, P. Antici, et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312 (2006) 410, 10.1126/science.1124412.
    [27]
    S. Kar, K. Markey, P.T. Simpson, C. Bellei, J.S. Green, et al., Dynamic control of laser-produced proton beams, Phys. Rev. Lett. 100 (2008), 10.1103/PhysRevLett.100.105004.
    [28]
    D.T. Offermann, K.A. Flippo, J. Cobble, M.J. Schmitt, S.A. Gaillard, et al., Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale, Phys. Plasmas 18 (2011), 10.1063/1.3589476.
    [29]
    T. Bartal, M.E. Foord, C. Bellei, M.H. Key, K.A. Flippo, et al., Focusing of short-pulse high-intensity laser-accelerated proton beams, Nat. Phys. 8 (2012) 139, 10.1038/nphys2153.
    [30]
    T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Controlled Fusion 57 (2015) 113001, 10.1088/0741-3335/57/11/113001.
    [31]
    M.H. Key, R.R. Freeman, S.P. Hatchett, A.J. MacKinnon, P.K. Patel, et al., Proton fast ignition, Fusion Sci. Technol. 49 (2006) 440.10.13182/fst06-a1160
    [32]
    M.E. Foord, T. Bartal, C. Bellei, M. Key, K. Flippo, et al., Proton trajectories and electric fields in a laser-accelerated focused proton beam. , Phys. Plasmas 19 (2012) 056702, 10.1063/1.3700181.
    [33]
    B. Qiao, M.E. Foord, M.S. Wei, R.B. Stephens, M.H. Key, et al., Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers, Phys. Rev. E 87 (2013) 013108, 10.1103/PhysRevE.87.013108.
    [34]
    D.B. Zou, H.B. Zhuo, X.H. Yang, T.P. Yu, F.Q. Shao, et al., Control of target-normal-sheath-accelerated protons from a guiding cone, Phys. Plasmas 22 (2015) 063103, 10.1063/1.4922053.
    [35]
    A. Morace, Fast Ignition: Limits of the Classic Method and Alternative Approaches, Presented at the 14th International Workshop on Fast Ignition and High Field Physics with High Power Lasers, May 17–20, PACIFICO, Yokohama, Japan, 2016.
    [36]
    L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fernández, GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner, Laser Part. Beams 24 (2006) 291, 10.1017/S0263034606060459.
    [37]
    A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, Radiation pressure acceleration of thin foils with circularly polarized laser pulses, New J. Phys. 10 (2008), 10.1088/1367-2630/10/1/013021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (226) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return