Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Gong Zheng, Hu Ronghao, Shou Yinren, Qiao Bin, Chen Chiaer, Xu Furong, He Xiantu, Yan Xueqing. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams[J]. Matter and Radiation at Extremes, 2016, 1(6). doi: 10.1016/j.mre.2016.10.005
Citation: Gong Zheng, Hu Ronghao, Shou Yinren, Qiao Bin, Chen Chiaer, Xu Furong, He Xiantu, Yan Xueqing. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams[J]. Matter and Radiation at Extremes, 2016, 1(6). doi: 10.1016/j.mre.2016.10.005

Radiation reaction induced spiral attractors in ultra-intense colliding laser beams

doi: 10.1016/j.mre.2016.10.005
More Information
  • Corresponding author: *Corresponding author. State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, 100871, China. E-mail address: x.yan@pku.edu.cn (X.Q. Yan).
  • Received Date: 2016-09-10
  • Accepted Date: 2016-10-27
  • Available Online: 2021-12-07
  • Publish Date: 2015-11-15
  • The radiation reaction effects on electron dynamics in counter-propagating circularly polarized laser beams are investigated through the linearization theorem and the results are in great agreement with numeric solutions. For the first time, the properties of fixed points in electron phase-space were analyzed with linear stability theory, showing that center nodes will become attractors if the classical radiation reaction is considered. Electron dynamics are significantly affected by the properties of the fixed points and the electron phase-space densities are found to be increasing exponentially near the attractors. The density growth rates are derived theoretically and further verified by particle-in-cell simulations, which can be detected in experiments to explore the effects of radiation reaction qualitatively. The attractor can also facilitate realizing a series of nanometer-scaled flying electron slices via adjusting the colliding laser frequencies.
  • loading
  • [1]
    G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78 (2006) 309–371.10.1103/revmodphys.78.309
    [2]
    E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81 (2009) 1229–1285.10.1103/revmodphys.81.1229
    [3]
    A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85 (2013) 751–793.10.1103/revmodphys.85.751
    [4]
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, et al., Femtosecond X-rays from laser-plasma accelerators, Rev. Mod. Phys. 85 (2013) 1–48.10.1103/revmodphys.85.1
    [5]
    A. Di Piazza, C. Müller, K. Hatsagortsyan, C. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177.10.1103/revmodphys.84.1177
    [6]
    P. Gibbon, Short Pulse Laser Interactions with Matter, World Scientific Publishing Company, 2004.
    [7]
    J. Meyer-ter Vehn, A. Pukhov, Z.-M. Sheng, Relativistic laser plasma interaction, in: Atoms, Solids, and Plasmas in Super-intense Laser Fields, Springer, 2001, pp. 167–192.
    [8]
    T. Toncian, C. Wang, E. McCary, A. Meadows, A. Arefiev, et al., Non-maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas, Matter Radiat. Extremes 1 (2016) 82–87.10.1016/j.mre.2015.11.001
    [9]
    G. Mourou, T. Tajima, More intense, shorter pulses, Science 331 (2011) 41–42.10.1126/science.1200292
    [10]
    S. Bulanov, T.Z. Esirkepov, M. Kando, H. Kiriyama, K. Kondo, Relativistically strong electromagnetic radiation in a plasma, J. Exp. Theor. Phys. 122 (2016) 426–433.10.1134/s1063776116030146
    [11]
    R. Duclous, J.G. Kirk, A. Bell, Monte Carlo calculations of pair production in high-intensity laser-plasma interactions, Plasma Phys. Control. Fusion 53 (2011) 015009.10.1088/0741-3335/53/1/015009
    [12]
    C. Ridgers, J. Kirk, R. Duclous, T. Blackburn, C. Brady, et al., Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions, J. Comput. Phys. 260 (2014) 273–285.10.1016/j.jcp.2013.12.007
    [13]
    A. Bell, J.G. Kirk, Possibility of prolific pair production with high-power lasers, Phys. Rev. Lett. 101 (2008) 200403.10.1103/physrevlett.101.200403
    [14]
    A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Quantum radiation reaction effects in multiphoton compton scattering, Phys. Rev. Lett. 105 (2010) 220403.10.1103/physrevlett.105.220403
    [15]
    N. Neitz, A. Di Piazza, Stochasticity effects in quantum radiation reaction, Phys. Rev. Lett. 111 (2013) 054802.10.1103/physrevlett.111.054802
    [16]
    I.V. Sokolov, N.M. Naumova, J.A. Nees, G.A. Mourou, V.P. Yanovsky, Dynamics of emitting electrons in strong laser fields, Phys. Plasmas 16 (2009) 093115.10.1063/1.3236748
    [17]
    T. Nakamura, J.K. Koga, T.Z. Esirkepov, M. Kando, G. Korn, et al., High-power γ-ray flash generation in ultraintense laser-plasma interactions, Phys. Rev. Lett. 108 (2012) 195001.10.1103/physrevlett.108.195001
    [18]
    J.D. Jackson, Classical Electrodynamics, Wiley, 1999.
    [19]
    L.L. Ji, A. Pukhov, I.Y. Kostyukov, B.F. Shen, K. Akli, Radiation-reaction trapping of electrons in extreme laser fields, Phys. Rev. Lett. 112 (2014) 145003.10.1103/physrevlett.112.145003
    [20]
    A. Gonoskov, A. Bashinov, I. Gonoskov, C. Harvey, A. Ilderton, et al., Anomalous radiative trapping in laser fields of extreme intensity, Phys. Rev. Lett. 113 (2014) 014801.10.1103/physrevlett.113.014801
    [21]
    T.Z. Esirkepov, S.S. Bulanov, J.K. Koga, M. Kando, K. Kondo, et al., Attractors and chaos of electron dynamics in electromagnetic standing waves, Phys. Lett. A 379 (2015) 2044–2054.10.1016/j.physleta.2015.06.017
    [22]
    G. Lehmann, K. Spatschek, Phase-space contraction and attractors for ultrarelativistic electrons, Phys. Rev. E 85 (2012) 056412.10.1103/physreve.85.056412
    [23]
    M. Tamburini, F. Pegoraro, A. Di Piazza, C.H. Keitel, T.V. Liseykina, et al., Radiation reaction effects on electron nonlinear dynamics and ion acceleration in laser-solid interaction, Nucl. Instrum. Methods Phys. Res., Sect. A 653 (2011) 181–185.10.1016/j.nima.2010.12.056
    [24]
    M. Vranic, T. Grismayer, R.A. Fonseca, L.O. Silva, Quantum radiation reaction in head-on laser-electron beam interaction, New J. Phys. 18 (2016) 073035.10.1088/1367-2630/18/7/073035
    [25]
    S. Bulanov, V. Mur, N. Narozhny, J. Nees, V. Popov, Multiple colliding electromagnetic pulses: A way to lower the threshold of e+e− pair production from vacuum, Phys. Rev. Lett. 104 (2010) 220404.10.1103/physrevlett.104.220404
    [26]
    T.G. Blackburn, C.P. Ridgers, J.G. Kirk, A.R. Bell, Quantum radiation reaction in laser electron-beam collisions, Phys. Rev. Lett. 112 (2014) 015001.10.1103/physrevlett.112.015001
    [27]
    T. Heinzl, C. Harvey, A. Ilderton, M. Marklund, S.S. Bulanov, et al., Detecting radiation reaction at moderate laser intensities, Phys. Rev. E 91 (2015) 023207.10.1103/physreve.91.023207
    [28]
    A.G.R. Thomas, C.P. Ridgers, S.S. Bulanov, B.J. Griffin, S.P.D. Mangles, Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam, Phys. Rev. X 2 (2012) 041004.10.1103/physrevx.2.041004
    [29]
    H. Wang, X. Yan, M. Zepf, Signatures of quantum radiation reaction in laser-electron-beam collisions, Phys. Plasmas 22 (2015) 093103.10.1063/1.4929851
    [30]
    E. Nerush, I.Y. Kostyukov, A. Fedotov, N. Narozhny, N. Elkina, et al., Laser field absorption in self-generated electron-positron pair plasma, Phys. Rev. Lett. 106 (2011) 035001.10.1103/physrevlett.106.035001
    [31]
    H.X. Chang, B. Qiao, Z. Xu, X.R. Xu, C.T. Zhou, et al., Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers. , Phys. Rev. E 92 (2015).053107.10.1103/physreve.92.053107
    [32]
    M. Jirka, O. Klimo, S.V. Bulanov, Z.T. Esirkepov, E. Gelfer, et al., Electron dynamics and e−e+ production by colliding laser pulses, Phys. Rev. E 93 (2016).023207.10.1103/physreve.93.023207
    [33]
    S.V. Bulanov, T.Z. Esirkepov, M. Kando, J. Koga, K. Kondo, et al., On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers, Plasma Phys. Rep. 41 (2015) 1–51.10.1134/s1063780x15010018
    [34]
    J.G. Kirk, A. Bell, I. Arka, Pair production in counter-propagating laser beams, Plasma Phys. Control. Fusion 51 (2009) 085008.10.1088/0741-3335/51/8/085008
    [35]
    M.W. Hirsch, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2012.
    [36]
    D. Jordan, P. Smith, Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers, Oxford University Press on Demand, 2007.
    [37]
    L. Landau, Em lifshitz the classical theory of fields, Course Theor. Phys. 2 (1975).
    [38]
    T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion 57 (2015) 113001.10.1088/0741-3335/57/11/113001
    [39]
    C. Ridgers, C.S. Brady, R. Duclous, J. Kirk, K. Bennett, et al., Dense electron-positron plasmas and ultraintense γ-rays from laser-irradiated solids, Phys. Rev. Lett. 108 (2012) 165006.10.1103/physrevlett.108.165006
    [40]
    M. Tamburini, F. Pegoraro, A. Di Piazza, C.H. Keitel, A. Macchi, Radiation reaction effects on radiation pressure acceleration, New J. Phys. 12 (2010) 123005.10.1088/1367-2630/12/12/123005
    [41]
    Z.-M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanović, T. Taguchi, et al., Stochastic heating and acceleration of electrons in colliding laser fields in plasma, Phys. Rev. Lett. 88 (2002) 055004.10.1103/physrevlett.88.055004
    [42]
    W.P. Leemans, C.G.R. Geddes, J. Faure, C. Tóth, J. van Tilborg, et al., Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary, Phys. Rev. Lett. 91 (2003) 074802.10.1103/physrevlett.91.074802
    [43]
    H.-C. Wu, J. Meyer-ter-Vehn, J. Fernández, B.M. Hegelich, Uniform laser-driven relativistic electron layer for coherent thomson scattering, Phys. Rev. Lett. 104 (2010) 234801.10.1103/physrevlett.104.234801
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (128) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return