| Citation: | Kline J.L., Hager J.D.. Aluminum X-ray mass-ablation rate measurements[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.09.003 |
| [1] |
J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933–4024.10.1063/1.871025
|
| [2] |
P. Amendt, Personal Communication (2014).
|
| [3] |
R.E. Olson, G.A. Rochau, O.L. Landen, R.J. Leeper, X-ray ablation rates in inertial confinement fusion capsule materials, Phys. Plasmas 18 (2011) 032706.10.1063/1.3566009
|
| [4] |
T.R. Boehly, R.S. Craxton, T.H. Hinterman, J.H. Kelly, T.J. Kessler, et al., The upgrade to the Omega laser system, Rev. Sci. Instrum. 66 (1995) 508–510.10.1063/1.1146333
|
| [5] |
J.M. Soures, R.L. McCrory, C.P. Verdon, A. Babushkin, R.E. Bahr, et al., Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system, Phys. Plasmas 3 (1996) 2108–2112.10.1063/1.871662
|
| [6] |
H.N. Kornblum, R.L. Kauffman, J.A. Smith, Measurement of 0.1–3-keV X rays from laser plasmas, Rev. Sci. Instrum. 57 (1986) 2179–2181.10.1063/1.1138723
|
| [7] |
C. Sorce, J. Schein, F. Weber, K. Widmann, K. Campbell, et al., Soft X-ray power diagnostic improvements at the Omega Laser Facility, Rev. Sci. Instrum. 77 (2006) 10E518.10.1063/1.2336462
|
| [8] |
H.F. Finn, UNSPEC Reference Manual Version 10/29/82, 1982.
|
| [9] |
R.L. Kauffman, H.N. Kornblum, D.W. Phillion, C.B. Darrow, Drive characterization of indirect drive targets on the Nova laser (invited), Rev. Sci. Instrum. 66 (1995) 678–682.10.1063/1.1146258
|
| [10] |
A. Seifter, G.A. Kyrala, Different methods of reconstructing spectra from filtered X-ray diode measurements, Rev. Sci. Instrum. 79 (2008) 10F323.10.1063/1.2957935
|
| [11] |
D.L. Fehl, F. Biggs, Verification of unfold error estimates in the unfold operator code, Rev. Sci. Instrum. 68 (1997) 890–893.10.1063/1.1147713
|
| [12] |
M.J. May, K. Widmann, C. Sorce, H.S. Park, M. Schneider, et al., Uncertainty analysis technique for OMEGA Dante measurements, Rev. Sci. Instrum. 81 (2010) 10E505.10.1063/1.3475385
|
| [13] |
J. Li, X.B. Huang, S.Q. Zhang, L.B. Yang, W.P. Xie, et al., Investigation of spectra unfolded for a filtered X-ray diode array with improved smoothness, Rev. Sci. Instrum. 80 (2009) 063106.10.1063/1.3157042
|
| [14] |
R.E. Marrs, K. Widmann, G.V. Brown, R.F. Heeter, S.A. Maclaren, et al., Use of a priori spectral information in the measurement of X-ray flux with filtered diode arrays, Rev. Sci. Instrum. 86 (2015) 103511.10.1063/1.4934542
|
| [15] |
N.E. Lanier, C. Hamilton, J.M. Taccetti, A monochromatic X-ray imaging system for characterizing low-density foams, Rev. Sci. Instrum. 83 (2012) 10E521.10.1063/1.4732183
|
| [16] |
J.J. Macfarlane, I.E. Golovkin, P.R. Woodruff, HELIOS-CR A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling, J. Quant Spectrosc. Radiat. Transfer 99 (2006) 381–397.10.1016/j.jqsrt.2005.05.031
|
), 3/4 (
) and 1 (
) hohlraum scale. Note, the two
different temperature profiles for the reversed ramp with the 3/4 scale hohlraum are
achieved by reducing the laser energy/beam from 500 J to 300 J.
) with the equivalent Planckain
spectrum (
) for a
radiation temperature of (258 ± 6) eV for a 5/8 scale hohlraum with a 1 ns square pulse
(solid blue curve in Fig. 2).
) along with the predicted
mass-ablation rate from Helios (
). The solid lines represent the
fits with the measured ablation rate coefficient being (0.59 ± 0.6)
mg·cm−2·ns−1 and the predicted value being 0.56
mg·cm−2·ns−1; (b) A comparison of the measured aluminum
mass-ablation rate with the fitted data (
) along with the confidence
intervals for the fit (
).
) along with the confidence
intervals (
) to
that of beryllium (
), high density carbon (
) and Ge doped CH
(
).