| Citation: | Kim A. A., Kovalchuk B. M., Kokshenev V. A., Shishlov A. V., Ratakhin N. A., Oreshkin V. I., Rostov V. V., Koshelev V. I., Losev V.F.. Review of high-power pulsed systems at the Institute of High Current Electronics[J]. Matter and Radiation at Extremes, 2016, 1(4). doi: 10.1016/j.mre.2016.08.001 |
| [1] |
S.P. Bugaev, S.D. Korovin, N.N. Koval, E.M. Oks, D.I. Proskurovsky, et al., Studies and application of intense low-energy electron and ion beams, in: Proc. KORUS 2003: 7th Korea-Russia Inter. Symp. on Science and Technology, vol. 1, 2003, pp. 1–6.
|
| [2] |
N.S. Sochugov, A.A. Soloviev, A.V. Shipilova, S.V. Rabotkin, V.P. Rotshtein, et al., The effect of pulsed electron beam pretreatment of magnetron sputtered ZrO2:Y2O3 films on the performance of IT-SOFC, Solid State Ionics 231 (2013) 11–17.10.1016/j.ssi.2012.11.001
|
| [3] |
N.N. Koval, Yu.F. Ivanov, I.V. Lopatin, Yh.H. Akhmadeev, V.V. Shugurov, et al., Generation of low-temperature gas discharge plasma in large vacuum volumes for plasma chemical processes, Russ. J. Gen. Chem. 85 (2015) 1326–1338.10.1134/s1070363215050485
|
| [4] |
B.M. Kovalchuk, V.A. Kokshenev, A.A. Kim, N.E. Kurmaev, S.V. Loginov, et al., GIT16: state of project in 1995–1997, in: Proc. 11th Inter. Pulsed Power Conf., Baltimore, 1997, pp. 715–723.
|
| [5] |
V.A. Kokshenev, F.I. Fursov, N.E. Kurmaev, A two-stage scheme of the current pulse sharpening on the GIT-12 generator with the use of the plasma opening switches, in: Proc. 14th Symp. High Current Electronics, Tomsk, 2006, pp. 328–331.
|
| [6] |
V.A. Kokshenev, B.M. Kovalchuk, F.I. Fursov, N.E. Kurmaev, Cascade from power amplifier and current transformer for Z-pinch experiments on the GIT-12 generator, in: Proc. 15th Symp. High Current Electronics, Tomsk, 2008, pp. 269–273.
|
| [7] |
V.A. Kokshenev, B.M. Kovalchuk, F.I. Fursov, N.E. Kurmaev, N.A. Ratakhin, et al., Adapting of a plasma opening switch with a load current multiplier in experiments on the GIT-12 generator, in: Proc. 16th Symp. High Current Electronics, Tomsk, 2010, pp. 273–277.
|
| [8] |
D. Klir, A.V. Shishlov, V.A. Kokshenev, P. Kubes, A. Yu. Labetsky, et al., Efficient generation of fast neutrons in an optimized deuterium gas-puff Z-pinch, Plasma Phys. Controlled Fusion 57 (2015) 044005.10.1088/0741-3335/57/4/044005
|
| [9] |
A.V. Luchinskii, N.A. Ratakhin, V.F. Fedushchak, A.N. Shepelev, Multipurpose transformer-type pulse generator, Russ. Phys. J. 40 (1997) 1178–1184.10.1007/bf02524306
|
| [10] |
S.A. Chaikovsky, A.S. Chuvatin, V.I. Oreshkin, A load current multiplier of the МИГ terawatt generator, Instrum. Exp. Tech. 55 (2012) 209–217.10.1134/s0020441212010150
|
| [11] |
S.A. Sorokin, S.A. Chaikovsky, Imploding liner stabilization experiments, AIP Conf. Proc. 299 (1993) 83–92;10.1063/1.2949228
|
| [12] |
T.J. Awe, K.J. Peterson, E.P. Yu, R.D. McBridge, D.B. Sinars, et al., Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners, Phys. Rev. Lett. 116 (2016) 065001.10.1103/physrevlett.116.065001
|
| [13] |
S.D. Korovin, V.V. Rostov, S.D. Polevin, I.V. Pegel, E. Schamiloglu, et al., Pulsed-power driven high power microwave sources, Proc. IEEE 92 (2004) 1082–1095.10.1109/jproc.2004.829020
|
| [14] |
S.D. Korovin, V.V. Rostov, E.M. Tot'meninov, A relativistic backward wave oscillator with a modulating resonance reflector, Tech. Phys. Lett. 31 (2005) 411–413.10.1134/1.1931784
|
| [15] |
A.I. Klimov, I.K. Kurkan, S.D. Polevin, V.V. Rostov, E.M. Tot'meninov, A multigigawatt X-band relativistic backward oscillator with a modulating resonant reflector, Tech. Phys. Lett. 34 (2008) 235–237.10.1134/s1063785008030176
|
| [16] |
E.M. Tot'meninov, P.V. Vykhodtsev, A.V. Gunin, A.I. Klimov, V.V. Rostov, Increase in the energy efficiency of a pulsed-periodic relativistic backward oscillator with a modulating resonant reflector, Tech. Phys. 59 (2014) 428–433.10.1134/s1063784214030268
|
| [17] |
V.V. Rostov, A.A. El'chaninov, A.I. Klimov, V.Yu. Konev, I.V. Romanchenko, et al., Phase control in parallel channels of shock-excited microwave nanosecond oscillators, IEEE Trans. Plasma Sci. 41 (2013) 2735–2741.10.1109/tps.2013.2270571
|
| [18] |
A.M. Efremov, V.I. Koshelev, B.M. Kovalchuk, V.V. Plisko, K.N. Sukhushin, Generation and radiation of ultra-wideband electromagnetic pulses with high stability and effective potential, Laser Part. Beams 32 (2014) 413–418.10.1017/s0263034614000299
|
| [19] |
Yu.A. Andreev, A.M. Efremov, V.I. Koshelev, B.M. Kovalchuk, V.V. Plisko, et al., Radiation of high-power ultra wideband pulses with elliptical polarization by four-element array of cylindrical helical antennas, Laser Part. Beams 33 (2015) 633–640.10.1017/s0263034615000725
|
| [20] |
S.V. Alekseev, A.I. Aristov, N.G. Ivanov, B.M. Kovalchuk, V.F. Losev, et al., Multi - terawatt femtosecond laser system of visible range based on a photochemical XeF(C-A) amplifier, Laser Part. Beams 31 (2013) 17–21.10.1017/s0263034612000870
|
| [21] |
T. Ozaki, J.-C. Kieffer, R. Toth, S. Fourmaux, H. Bandulet, Experimental prospects at the Canadian advanced laser light source facility, Laser Part. Beams 24 (2006) 101–106.10.1017/s0263034606060150
|
| [22] |
S.V. Alekseev, M.V. Ivanov, N.G. Ivanov, V.F. Losev, G.A. Mesyats, et al., Parameters of the THL-100 hybrid femtosecond laser system after modification, Russ. Phys. J. 58 (2015) 1087–1092.10.1007/s11182-015-0616-4
|
| [23] |
B.M. Kovalchuk, V.A. Visir, A.A. Kim, E.V. Kumpyak, S.V. Loginov, et al., Fast primary storage device utilizing a linear pulse transformer, Russ. Phys. J. 40 (1997) 1142–1153.10.1007/bf02524302
|
| [24] |
Ch. Mangeant, B. Roques, R. Cadiergues, F. Lassalle, F. Bayol, et al., Status on the Sphinx generator based on 1 microsecond rise time LTD stages, in: Proc. 13th Symp. High Current Electronics, Tomsk, 2004, pp. 111–114.
|
| [25] |
B.M. Kovalchuk, A.V. Kharlov, V.B. Zorin, A.A. Zherlitsyn, A compact submicrosecond, high current generator, Rev. Sci. Instrum. 80 (2008) 083504.10.1063/1.3193714
|
| [26] |
B.M. Kovalchuk, A.V. Kharlov, E.V. Kumpyak, A.A. Zherlitsyn, Pulse generators based on air-insulated linear-transformer-driver stages, Phys. Rev. STAB 16 (2013) 050401.10.1103/physrevstab.16.050401
|
| [27] |
A.A. Kim, M.G. Mazarakis, V.A. Sinebryukhov, B.M. Kovalchuk, V.A. Visir, et al., Development and tests of fast 1-MA linear transformer driver stages, Phys. Rev. STAB 12 (2009) 050402.10.1103/physrevstab.12.050402
|
| [28] |
SNL/ITHPP/HCEI contract #696243.
|
| [29] |
A.A. Kim, M.G. Mazarakis, V.A. Sinebryukhov, S.N. Volkov, V.M. Alexeenko, et al., Lifetime of the HCEI spark gap switch for linear transformer drivers, in: Proc. 20th IEEE Inter. Pulsed Power Conf., Austin, 2015, pp. 196–199.
|
| [30] |
Dr. Peitian Cong, Private Communication, 2016. The description of this switch is given in: Peitian Cong, Tieping Sun, Aici Qiu, Zhengzhong Zeng Analysis and enhancing of self-breakdown voltages of multistage gas switch, IEEE Trans. Plasma Sci. 41 (2013) 187–191.10.1109/tps.2012.2227125
|
| [31] |
Zhou Lin, Li Zhenghong, Wang Zhen, Liang Chuan, Li Mingjia, et al., Design of a 5-MA linear-transformer-driver accelerator for wire array Z-pinch experiments, Phys. Rev. Accel. Beams 19 (2016) 030401.10.1103/physrevaccelbeams.19.030401
|