Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Huo Wenyi, Li Zhichao, Yang Dong, Lan Ke, Liu Jie, Ren Guoli, Li Sanwei, Yang Zhiwen, Guo Liang, Hou Lifei, Xie Xuefei, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Yuan Guanghui, Zhang Haijun, Jiang Baibin, Huang Lizhen, Du Kai, Zhao Runchang, Li Ping, Wang Wei, Su Jingqin, Ding Yongkun, He Xiantu, Zhang Weiyan. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.02.001
Citation: Huo Wenyi, Li Zhichao, Yang Dong, Lan Ke, Liu Jie, Ren Guoli, Li Sanwei, Yang Zhiwen, Guo Liang, Hou Lifei, Xie Xuefei, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Yuan Guanghui, Zhang Haijun, Jiang Baibin, Huang Lizhen, Du Kai, Zhao Runchang, Li Ping, Wang Wei, Su Jingqin, Ding Yongkun, He Xiantu, Zhang Weiyan. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.02.001

First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole

doi: 10.1016/j.mre.2016.02.001
More Information
  • Corresponding author: *Corresponding author. Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-14, Haidian District, Beijing 100088, China. E-mail address: lan_ke@iapcm.ac.cn (K. Lan).
  • Received Date: 2015-11-28
  • Accepted Date: 2015-11-30
  • Publish Date: 2016-01-15
  • The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion. While, in contrast to the cylindrical hohlraums, the narrow space between the laser beams and the spherical hohlraum wall is usually commented. In this Letter, we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole (LEH) can dramatically improve the laser propagation inside the spherical hohlraums. In addition, the laser beam deflection in the hohlraum is observed for the first time in the experiments. Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs. Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.
  • loading
  • [1]
    J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933–4024.10.1063/1.871025
    [2]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford Science, Oxford, 2004.
    [3]
    J.D. Moody, D.A. Callahan, D.E. Hinkel, P.A. Amendt, K.L. Baker, et al., Progress in hohlraum physics for the national ignition facility, Phys. Plasmas 21 (2014) 056317.10.1063/1.4876966
    [4]
    D.A. Callahan, N.B. Meezan, S.H. Glenzer, A.J. MacKinnon, L.R. Benedetti, et al., The velocity campaign for ignition on NIF, Phys. Plasmas 19 (2012) 056305.10.1063/1.3694840
    [5]
    D.S. Clark, M.M. Marinak, C.R. Weber, D.C. Eder, S.W. Haan, et al., Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign, Phys. Plasmas 22 (2015) 022703.10.1063/1.4906897
    [6]
    L.F. Berzak Hopkins, N.B. Meezan, S. Le Pape, L. Divol, A.J. Mackinnon, et al., First high-convergence cryogenic implosion in a near-vacuum hohlraum, Phys. Rev. Lett. 114 (2015) 175001.10.1103/PhysRevLett.114.175001
    [7]
    T. Doppner, D.A. Callahan, O.A. Hurricane, D.E. Hinkel, T. Ma, et al., Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the National Ignition Facility, Phys. Rev. Lett. 115 (2015) 055001. 10.1103/PhysRevLett.115.055001
    [8]
    S.A. Bel¡Kov, F.M. Abzaev, A.V. Bessarab, S.V. Bondarenko, A.V. Veselov, et al., Compression and heating of indirectly driven spherical fusion targets on the ISKRA-5 facility, Laser Part. Beams 17 (1999) 591–596.10.1017/s0263034699174020
    [9]
    K. Lan, J. Liu, D.X. Lai, W.D. Zheng, X.T. He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraumtocapsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [10]
    K. Lan, X.T. He, J. Liu, W.D. Zheng, D.X. Lai, Octahedral spherical hohlraum and its laser arrangement for inertial fusion, Phys. Plasmas 21 (2014) 052704.10.1063/1.4878835
    [11]
    D.W. Phillion, S.M. Pollaine, Dynamical compensation of irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral symmetry by laser beams, Phys. Plasmas 1 (1994) 2963–2975.10.1063/1.870537
    [12]
    J.M. Wallace, T.J. Murphy, N.D. Delamater, K.A. Klare, J.A. Oertel, et al., Inertial confinement fusion with tetrahedral hohlraums at OMEGA, Phys. Rev. Lett. 82 (1999) 3807–3810.10.1103/physrevlett.82.3807
    [13]
    W.Y. Huo, J. Liu, Y. Zhao, W. Zheng, K. Lan, Insensitivity of the octahedral spherical hohlraum to power imbalance, pointing accuracy, and assemblage accuracy, Phys. Plasmas 21 (2014) 114503.10.1063/1.4901812
    [14]
    K. Lan, W.D. Zheng, Novel spherical hohlraum with cylindrical laser entrance holes and shields, Phys. Plasmas 21 (2014) 090704.10.1063/1.4895503
    [15]
    X.T. He, W.Y. Zhang, Inertial fusion research in China, Eur. Phys. J. D 44 (2007) 227–231.10.1140/epjd/e2007-00005-1
    [16]
    W.Y. Huo, K. Lan, Y.S. Li, D. Yang, S.W. Li, et al., Determination of the hohlraum M-band fraction by a shock-wave technique on the SGIII prototype laser facility, Phys. Rev. Lett. 109 (2012) 145004.10.1103/physrevlett.109.145004
    [17]
    N.D. Delamater, T.J. Murphy, A.A. Hauer, R.L. Kauffman, A.L. Richard, et al., Symmetry experiments in gas-filled hohlraums at NOVA, Phys. Plasmas 3 (1996) 2022–2028.10.1063/1.871999
    [18]
    G. Huser, C. Courtois, M.-C. Monteil, Wall and laser spot motion in cylindrical hohlraums, Phys. Plasmas 16 (2009) 032703.10.1063/1.3099054
    [19]
    K. Lan, P.J. Gu, G.L. Ren, X. Li, W.Y. Huo, et al., An initial design of hohlraum driven by a shaped laser pulse, Laser Part. Beams 28 (2010) 421–427.10.1017/s026303461000042x
    [20]
    H.A. Rose, Laser beam deflection by flow and nonlinear self-focusing, Phys. Plasmas 3 (1996) 1709–1727.10.1063/1.871690
    [21]
    D.E. Hinkel, E.A. Williams, C.H. Still, Laser beam deflection induced by transverse plasma flow, Phys. Rev. Lett. 77 (1996) 1298–1301.10.1103/physrevlett.77.1298
    [22]
    J.D. Moody, B.J. MacGowan, D.E. Hinkel, W.L. Kruer, E.A. Williams, et al., First optical observation of intensity dependent laser beam deflection in a flowing plasma, Phys. Rev. Lett. 77 (1996) 1294–1297.10.1103/physrevlett.77.1294
    [23]
    P.E. Young, C.H. Still, D.E. Hinkel, W.L. Kruer, E.A. Williams, R.L. Berger, K.G. Estabrook, Observation of laser-beam bending due to transverse plasma flow, Phys. Rev. Lett. 81 (1998) 1425–1428.10.1103/physrevlett.81.1425
    [24]
    P. Amendt, C. Cerjan, A. Hamza, D.E. Hinkel, J.L. Milovich, et al., Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums, Phys. Plasmas 14 (2007) 056312.10.1063/1.2716406
    [25]
    K. Lan, D.X. Lai, Y.Q. Zhao, X. Li, Initial study and design on ignition ellipraum, Laser Part. Beams 30 (2012) 175–182.10.1017/s0263034611000772
    [26]
    W.Y. Huo, G.L. Ren, K. Lan, X. Li, C.S. Wu, et al., Simulation study of hohlraum experiments on SGIII-prototype laser facility, Phys. Plasmas 17 (2010) 123114.10.1063/1.3526599
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (209) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return