| Citation: | Huo Wenyi, Li Zhichao, Yang Dong, Lan Ke, Liu Jie, Ren Guoli, Li Sanwei, Yang Zhiwen, Guo Liang, Hou Lifei, Xie Xuefei, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Yuan Guanghui, Zhang Haijun, Jiang Baibin, Huang Lizhen, Du Kai, Zhao Runchang, Li Ping, Wang Wei, Su Jingqin, Ding Yongkun, He Xiantu, Zhang Weiyan. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2016.02.001 |
| [1] |
J.
Lindl, Development of the indirect-drive
approach to inertial confinement fusion and the target physics basis for ignition and
gain, Phys. Plasmas
2 (1995) 3933–4024.10.1063/1.871025
|
| [2] |
S.
Atzeni, J.
Meyer-ter-Vehn, The Physics of Inertial
Fusion, Oxford Science,
Oxford, 2004.
|
| [3] |
J.D.
Moody, D.A.
Callahan, D.E.
Hinkel, P.A.
Amendt, K.L.
Baker, et al., Progress in
hohlraum physics for the national ignition facility, Phys.
Plasmas
21 (2014) 056317.10.1063/1.4876966
|
| [4] |
D.A.
Callahan, N.B.
Meezan, S.H.
Glenzer, A.J.
MacKinnon, L.R.
Benedetti, et al., The
velocity campaign for ignition on NIF, Phys. Plasmas
19 (2012) 056305.10.1063/1.3694840
|
| [5] |
D.S.
Clark, M.M.
Marinak, C.R.
Weber, D.C.
Eder, S.W.
Haan, et al., Radiation
hydrodynamics modeling of the highest compression inertial confinement fusion ignition
experiment from the National Ignition Campaign, Phys.
Plasmas
22 (2015) 022703.10.1063/1.4906897
|
| [6] |
L.F.
Berzak Hopkins, N.B.
Meezan, S.
Le Pape, L.
Divol, A.J.
Mackinnon, et al., First
high-convergence cryogenic implosion in a near-vacuum hohlraum,
Phys. Rev. Lett.
114 (2015) 175001.10.1103/PhysRevLett.114.175001
|
| [7] |
T.
Doppner, D.A.
Callahan, O.A.
Hurricane, D.E.
Hinkel, T.
Ma, et al., Demonstration
of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums
at the National Ignition Facility, Phys. Rev. Lett.
115 (2015) 055001. 10.1103/PhysRevLett.115.055001
|
| [8] |
S.A.
Bel¡Kov, F.M.
Abzaev, A.V.
Bessarab, S.V.
Bondarenko, A.V.
Veselov, et al.,
Compression and heating of indirectly driven spherical fusion targets on
the ISKRA-5 facility, Laser Part. Beams
17 (1999) 591–596.10.1017/s0263034699174020
|
| [9] |
K.
Lan, J.
Liu, D.X.
Lai, W.D.
Zheng, X.T.
He, High flux symmetry of the spherical
hohlraum with octahedral 6LEHs at the hohlraumtocapsule radius ratio of
5.14, Phys. Plasmas
21 (2014) 010704.10.1063/1.4863435
|
| [10] |
K.
Lan, X.T.
He, J.
Liu, W.D.
Zheng, D.X.
Lai, Octahedral spherical hohlraum and
its laser arrangement for inertial fusion, Phys.
Plasmas
21 (2014) 052704.10.1063/1.4878835
|
| [11] |
D.W.
Phillion, S.M.
Pollaine, Dynamical compensation of
irradiation nonuniformities in a spherical hohlraum illuminated with tetrahedral
symmetry by laser beams, Phys. Plasmas
1 (1994) 2963–2975.10.1063/1.870537
|
| [12] |
J.M.
Wallace, T.J.
Murphy, N.D.
Delamater, K.A.
Klare, J.A.
Oertel, et al., Inertial
confinement fusion with tetrahedral hohlraums at OMEGA, Phys.
Rev. Lett.
82 (1999) 3807–3810.10.1103/physrevlett.82.3807
|
| [13] |
W.Y.
Huo, J.
Liu, Y.
Zhao, W.
Zheng, K.
Lan, Insensitivity of the octahedral
spherical hohlraum to power imbalance, pointing accuracy, and assemblage
accuracy, Phys. Plasmas
21 (2014) 114503.10.1063/1.4901812
|
| [14] |
K.
Lan, W.D.
Zheng, Novel spherical hohlraum with
cylindrical laser entrance holes and shields, Phys.
Plasmas
21 (2014) 090704.10.1063/1.4895503
|
| [15] |
X.T.
He, W.Y.
Zhang, Inertial fusion research in
China, Eur. Phys. J. D
44 (2007) 227–231.10.1140/epjd/e2007-00005-1
|
| [16] |
W.Y.
Huo, K.
Lan, Y.S.
Li, D.
Yang, S.W.
Li, et al., Determination
of the hohlraum M-band fraction by a shock-wave technique on the SGIII prototype laser
facility, Phys. Rev. Lett.
109 (2012) 145004.10.1103/physrevlett.109.145004
|
| [17] |
N.D.
Delamater, T.J.
Murphy, A.A.
Hauer, R.L.
Kauffman, A.L.
Richard, et al., Symmetry
experiments in gas-filled hohlraums at NOVA, Phys.
Plasmas
3 (1996) 2022–2028.10.1063/1.871999
|
| [18] |
G.
Huser, C.
Courtois, M.-C.
Monteil, Wall and laser spot motion in
cylindrical hohlraums, Phys. Plasmas
16 (2009) 032703.10.1063/1.3099054
|
| [19] |
K.
Lan, P.J.
Gu, G.L.
Ren, X.
Li, W.Y.
Huo, et al., An initial
design of hohlraum driven by a shaped laser pulse, Laser Part.
Beams
28 (2010) 421–427.10.1017/s026303461000042x
|
| [20] |
H.A.
Rose, Laser beam deflection by flow and
nonlinear self-focusing, Phys. Plasmas
3 (1996) 1709–1727.10.1063/1.871690
|
| [21] |
D.E.
Hinkel, E.A.
Williams, C.H.
Still, Laser beam deflection induced by
transverse plasma flow, Phys. Rev. Lett.
77 (1996) 1298–1301.10.1103/physrevlett.77.1298
|
| [22] |
J.D.
Moody, B.J.
MacGowan, D.E.
Hinkel, W.L.
Kruer, E.A.
Williams, et al., First
optical observation of intensity dependent laser beam deflection in a flowing
plasma, Phys. Rev. Lett.
77 (1996) 1294–1297.10.1103/physrevlett.77.1294
|
| [23] |
P.E.
Young, C.H.
Still, D.E.
Hinkel, W.L.
Kruer, E.A.
Williams, R.L.
Berger, K.G.
Estabrook, Observation of laser-beam
bending due to transverse plasma flow, Phys. Rev. Lett.
81 (1998) 1425–1428.10.1103/physrevlett.81.1425
|
| [24] |
P.
Amendt, C.
Cerjan, A.
Hamza, D.E.
Hinkel, J.L.
Milovich, et al., Assessing
the prospects for achieving double-shell ignition on the National Ignition Facility
using vacuum hohlraums, Phys. Plasmas
14 (2007) 056312.10.1063/1.2716406
|
| [25] |
K.
Lan, D.X.
Lai, Y.Q.
Zhao, X.
Li, Initial study and design on ignition
ellipraum, Laser Part. Beams
30 (2012) 175–182.10.1017/s0263034611000772
|
| [26] |
W.Y.
Huo, G.L.
Ren, K.
Lan, X.
Li, C.S.
Wu, et al., Simulation
study of hohlraum experiments on SGIII-prototype laser facility,
Phys. Plasmas
17 (2010) 123114.10.1063/1.3526599
|