Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
Toncian T., Wang C., McCary E., Meadows A., Arefiev A.V., Blakeney J., Serratto K., Kuk D., Chester C., Roycroft R., Gao L., Fu H., Yan X.Q., Schreiber J., Pomerantz I., Bernstein A., Quevedo H., Dyer G., Ditmire T., Hegelich B.M.. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2015.11.001
Citation: Toncian T., Wang C., McCary E., Meadows A., Arefiev A.V., Blakeney J., Serratto K., Kuk D., Chester C., Roycroft R., Gao L., Fu H., Yan X.Q., Schreiber J., Pomerantz I., Bernstein A., Quevedo H., Dyer G., Ditmire T., Hegelich B.M.. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas[J]. Matter and Radiation at Extremes, 2016, 1(1). doi: 10.1016/j.mre.2015.11.001

Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

doi: 10.1016/j.mre.2015.11.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: toma.toncian@austin.utexas.edu (T. Toncian).
  • Received Date: 2015-10-31
  • Accepted Date: 2015-12-03
  • Available Online: 2021-12-07
  • Publish Date: 2016-01-15
  • The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST) laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA) [1] as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments [2]. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.
  • loading
  • [1]
    A. Pukhov, J. Meyer-ter-Vehn, Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations, Phys. Plasmas 5 (1998) 1880.10.1063/1.872821
    [2]
    C. Gahn, G.D. Tsakiris, A. Pukhov, J. Meyer-ter-vehn, G. Pretzler, et al., Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels, Phys. Rev. Lett. 83 (1999) 4772.10.1103/physrevlett.83.4772
    [3]
    F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, et al., A study of picosecond laser–solid interactions up to 1019 W cm−2, Phys. Plasmas 4 (1997) 447.10.1063/1.872103
    [4]
    G. Malka, M.M. Aleonard, J.F. Chemin, G. Claverie, M.R. Harston, et al., Relativistic electron generation in interactions of a 30 TW laser pulse with a thin foil target, Phys. Rev. E 66 (2002) 066402.10.1103/physreve.66.066402
    [5]
    W.J. Ma, J.H. Bin, H.Y. Wang, M. Yeung, C. Kreuzer, et al., Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet, Phys. Rev. Lett. 113 (2014) 235002.10.1103/physrevlett.113.235002
    [6]
    D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, et al., Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet, Nat. Commun. 4 (2013) 1763–1767.10.1038/ncomms2775
    [7]
    T. Iwawaki, H. Habara, S. Baton, K. Morita, J. Fuchs, et al., Collimated fast electron beam generation in critical density plasma, Phys. Plasmas 21 (2014) 113103.10.1063/1.4900868
    [8]
    D. Kiefer, A. Henig, D. Jung, D.C. Gautier, K.A. Flippo, et al., First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils, Eur. Phys. J. D. 55 (2009) 427–432.10.1140/epjd/e2009-00199-0
    [9]
    H.C. Wu, Phase-independent generation of relativistic electron sheets, Appl. Phys. Lett. 99 (2011) 021503.10.1063/1.3609872
    [10]
    H.C. Wu, J. meyer-ter-Vehn, The reflectivity of relativistic ultra-thin electron layers, Eur. Phys. J. D 55 (2009) 443–449.10.1140/epjd/e2009-00082-0
    [11]
    H.C. Wu, J. meyer-ter-Vehn, J. Fernández, B.M. Hegelich, Uniform laser-driven relativistic electron layer for coherent Thomson scattering, Phys. Rev. Lett. 104 (2010) 234801.10.1103/physrevlett.104.234801
    [12]
    V.V. Kulagin, V.A. Cherepenin, M.S. Hur, H. Suk, Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: dynamics of electrons in a linearly polarized external field, Phys. Plasmas 14 (2007) 113101.10.1063/1.2799164
    [13]
    D. Habs, M. Hegelich, J. Schreiber, M. Gross, A. Henig, et al., Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams, Appl. Phys. B 93 (2008) 349–354.10.1007/s00340-008-3239-4
    [14]
    D. Wu, C.Y. Zheng, X.Q. Yan, M.Y. Yu, X.T. He, Breather-like penetration of ultrashort linearly polarized laser into over-dense plasmas, Phys. Plasmas 20 (2013) 033101.10.1063/1.4794197
    [15]
    W. Ma, V.K. Liechtenstein, J. Szerypo, D. Jung, P. Hilz, et al., Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration, Nucl. Instrum. Methods Phys. Res., Sect. A 655 (2011) 53–56.10.1016/j.nima.2011.06.019
    [16]
    C. Gahn, G.D. Tsakiris, G. Pretzler, K.J. Witte, C. Delfin, et al., Generating positrons with femtosecond-laser pulses, Appl. Phys. Lett. 77 (2000) 2662.10.1063/1.1319526
    [17]
    X. Wang, M. Krishnan, N. Saleh, H. Wang, D. Umstadter, Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas, Phys. Rev. Lett. 84 (2000) 5324–5327.10.1103/physrevlett.84.5324
    [18]
    S. Fritzler, K. Ta Phuoc, V. Malka, A. Rousse, E. Lefebvre, Ultrashort electron bunches generated with high-intensity lasers: applications to injectors and x-ray sources, Appl. Phys. Lett. 83 (2003) 3888.10.1063/1.1626016
    [19]
    S.B. Liu, J. Zhang, W. Yu, Acceleration and double-peak spectrum of hot electrons in relativistic laser plasmas, Phys. Rev. E 60 (1999) 3279.10.1103/physreve.60.3279
    [20]
    V. Malka, S. Fritzler, E. Lefebvre, M.M. Aléonard, F. Burgy, Electron acceleration by a wake field forced by an intense ultrashort laser pulse, Science 298 (NOVEMBER 2002) 1596–1600.10.1126/science.1076782
    [21]
    C. Geddes, C. Toth, J. van Tilborg, E. Esarey, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature 431 (30 September 2004) 538–541.10.1038/nature02900
    [22]
    S. Mangles, C.D. Murphy, Z. Najmudin, A. Thomas, Monoenergetic beams of relativistic electrons from intense laser–plasma interactions, Nature 431 (30 September 2004) 535–538.10.1038/nature02939
    [23]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, A laser–plasma accelerator producing monoenergetic electron beams, Nature 431 (30 September 2004) 541–544.10.1038/nature02963
    [24]
    W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, et al., Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett. 113 (2014) 245002.10.1103/physrevlett.113.245002
    [25]
    X. M. Wang, R. Zgadzaj, N. Fazel, Z. Y. Li, S. A. Yi, et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4, 1–9 (1AD).10.1038/ncomms2988
    [26]
    G.B. Zhang, Y.Y. Ma, H. Xu, N.A. Hafz, X.H. Yang, et al., Enhanced electron injection in laser-driven bubble acceleration by ultra-intense laser irradiating foil-gas targets, Phys. Plasmas 22 (2015) 083110.10.1063/1.4927583
    [27]
    T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion 57 (2015) 1–26.10.1088/0741-3335/57/11/113001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (113) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return