Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 9 Issue 3
May  2024
Turn off MathJax
Article Contents
Zhang Jurong, Liu Hanyu, Chen Changfeng, Ma Yanming. Sequestration of helium and xenon via iron-halide compounds in early Earth[J]. Matter and Radiation at Extremes, 2024, 9(3): 037403. doi: 10.1063/5.0164149
Citation: Zhang Jurong, Liu Hanyu, Chen Changfeng, Ma Yanming. Sequestration of helium and xenon via iron-halide compounds in early Earth[J]. Matter and Radiation at Extremes, 2024, 9(3): 037403. doi: 10.1063/5.0164149

Sequestration of helium and xenon via iron-halide compounds in early Earth

doi: 10.1063/5.0164149
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: lhy@calypso.cn
  • Received Date: 2023-06-21
  • Accepted Date: 2024-02-23
  • Available Online: 2024-05-01
  • Publish Date: 2024-05-01
  • The terrestrial abundance anomalies of helium and xenon suggest the presence of deep-Earth reservoirs of these elements, which has led to great interest in searching for materials that can host these usually unreactive elements. Here, using an advanced crystal structure search approach in conjunction with first-principles calculations, we show that several Xe/He-bearing iron halides are thermodynamically stable in a broad region of P–T phase space below 60 GPa. Our results present a compelling case for sequestration of He and Xe in the early Earth and may suggest their much wider distribution in the present Earth than previously believed. These findings offer insights into key material-based and physical mechanisms for elucidating major geological phenomena.
  • loading
  • [1]
    M. Ozima and F. Podosek, “Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe,” J. Geophys. Res.: Solid Earth 104, 25493, (1999).10.1029/1999jb900257
    [2]
    M. A. Bouhifd, A. P. Jephcoat, V. S. Heber, and S. P. Kelley, “Helium in Earth’s early core,” Nat. Geosci. 6, 982 (2013).10.1038/ngeo1959
    [3]
    R. O. Pepin, “On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles,” Icarus 92, 2 (1991).10.1016/0019-1035(91)90036-s
    [4]
    R. O. Pepin and D. Porcelli, “Origin of noble gases in the terrestrial planets,” Rev. Mineral. Geochem. 47, 191 (2002).10.2138/rmg.2002.47.7
    [5]
    A. P. Jephcoat, “Rare-gas solids in the Earth’s deep interior,” Nature 393, 355 (1998).10.1038/30712
    [6]
    L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, “Reactions of xenon with iron and nickel are predicted in the Earth’s inner core,” Nat. Chem. 6, 644 (2014).10.1038/nchem.1925
    [7]
    R. Hoppe, W. Dähne, H. Mattauch, and K. Rödder, “Fluorination of xenon,” Angew Chem. Int. Ed. Engl. 1, 599 (1962).10.1002/anie.196205992
    [8]
    D. Smith, “Xenon trioxide,” J. Am. Chem. Soc. 85, 816 (1963).10.1021/ja00889a036
    [9]
    L. Graham, O. Graudejus, N. K. Jha, and N. Bartlett, “Concerning the nature of XePtF6,” Coord. Chem. Rev 197, 321 (2000).10.1016/S0010-8545(99)00190-3
    [10]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
    [11]
    M. Miao, Y. Sun, H. Liu, and Y. Ma, “Open questions on the high-pressure chemistry of the noble gases,” Commun. Chem. 5, 15 (2022).10.1038/s42004-022-00631-5
    [12]
    X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, and V. L. Deringer, “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440 (2017).10.1038/nchem.2716
    [13]
    A. Dewaele, N. Worth, C. J. Pickard, R. J. Needs, S. Pascarelli, O. Mathon, M. Mezouar, and T. Irifune, “Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure,” Nat. Chem. 8, 784 (2016).10.1038/nchem.2528
    [14]
    A. Hermann and P. Schwerdtfeger, “Xenon suboxides stable under pressure,” J. Phys. Chem. Lett. 5, 4336 (2014).10.1021/jz502230b
    [15]
    M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, “Pressure-induced bonding and compound formation in xenon–hydrogen solids,” Nat. Chem. 2, 50 (2010).10.1038/nchem.445
    [16]
    M.-s. Miao, X.-l. Wang, J. Brgoch, F. Spera, M. G. Jackson, G. Kresse, and H.-q. Lin, “Anionic chemistry of noble gases: Formation of Mg–ng (NG = Xe, Kr, Ar) compounds under pressure,” J. Am. Chem. Soc. 137, 14122 (2015).10.1021/jacs.5b08162
    [17]
    E. Stavrou, Y. Yao, A. F. Goncharov, S. S. Lobanov, J. M. Zaug, H. Liu, E. Greenberg, and V. B. Prakapenka, “Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions,” Phys. Rev. Lett. 120, 096001 (2018).10.1103/physrevlett.120.096001
    [18]
    B. Monserrat, M. Martinez-Canales, R. J. Needs, and C. J. Pickard, “Helium-iron compounds at terapascal pressures,” Phys. Rev. Lett. 121, 015301 (2018).10.1103/physrevlett.121.015301
    [19]
    C. Liu, H. Gao, Y. Wang, R. J. Needs, C. J. Pickard, J. Sun, H.-T. Wang, and D. Xing, “Multiple superionic states in helium–water compounds,” Nat. Phys. 15, 1065 (2019).10.1038/s41567-019-0568-7
    [20]
    J. Shi, W. Cui, J. Hao, M. Xu, X. Wang, and Y. Li, “Formation of ammonia–helium compounds at high pressure,” Nat. Commun. 11, 3164 (2020).10.1038/s41467-020-16835-z
    [21]
    Y. Bai, Z. Liu, J. Botana, D. Yan, H.-Q. Lin, J. Sun, C. J. Pickard, R. J. Needs, and M.-S. Miao, “Electrostatic force driven helium insertion into ammonia and water crystals under pressure,” Commun. Chem. 2, 102 (2019).10.1038/s42004-019-0204-6
    [22]
    H. Gao, J. Sun, C. J. Pickard, and R. J. Needs, “Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides,” Phys. Rev. Mater. 3, 015002 (2019).10.1103/physrevmaterials.3.015002
    [23]
    C. Sanloup, H.-k. Mao, and R. J. Hemley, “High-pressure transformations in xenon hydrates,” Proc. Natl. Acad. Sci. U. S. A. 99, 25 (2002).10.1073/pnas.221602698
    [24]
    G. T. Sill and L. L. Wilkening, “Ice clathrate as a possible source of the atmospheres of the terrestrial planets,” Icarus 33, 13 (1978).10.1016/0019-1035(78)90020-9
    [25]
    J. F. Wacker and E. Anders, “Trapping of xenon in ice: Implications for the origin of the Earth’s noble gases,” Geochim. Cosmochim. Acta 48, 2373 (1984).10.1016/0016-7037(84)90232-1
    [26]
    J. i. Matsuda and K. Matsubara, “Noble gases in silica and their implication for the terrestrial “missing” Xe,” Geophys. Res. Lett. 16, 81, (1989).10.1029/gl016i001p00081
    [27]
    C. Sanloup, B. C. Schmidt, E. M. C. Perez, A. Jambon, E. Gregoryanz, and M. Mezouar, “Retention of xenon in quartz and Earth’s missing xenon,” Science 310, 1174 (2005).10.1126/science.1119070
    [28]
    Q. Zhu, D. Y. Jung, A. R. Oganov, C. W. Glass, C. Gatti, and A. O. Lyakhov, “Stability of xenon oxides at high pressures,” Nat. Chem. 5, 61 (2013).10.1038/nchem.1497
    [29]
    K. K. Lee and G. Steinle‐Neumann, “High‐pressure alloying of iron and xenon:“Missing” Xe in the Earth’s core?,” J. Geophys. Res.: Solid Earth 111, B02202, (2006).10.1029/2005jb003781
    [30]
    J. Zhang, J. Lv, H. Li, X. Feng, C. Lu, S. A. Redfern, H. Liu, C. Chen, and Y. Ma, “Rare helium-bearing compound FeO2He stabilized at deep-earth conditions,” Phys. Rev. Lett. 121, 255703 (2018).10.1103/physrevlett.121.255703
    [31]
    F. Peng, X. Song, C. Liu, Q. Li, M. Miao, C. Chen, and Y. Ma, “Xenon iron oxides predicted as potential Xe hosts in Earth’s lower mantle,” Nat. Commun. 11, 5227 (2020).10.1038/s41467-020-19107-y
    [32]
    W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol 120, 223 (1995).10.1016/0009-2541(94)00140-4
    [33]
    B. Fegley, Jr, K. Lodders, and N. S. Jacobson, “Volatile element chemistry during accretion of the Earth,” Geochem. 80, 125594 (2020).10.1016/j.chemer.2019.125594
    [34]
    N. Braukmüller, F. Wombacher, C. Funk, and C. Münker, “Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source,” Nat. Geosci 12, 564 (2019).10.1038/s41561-019-0375-x
    [35]
    P. L. Clay, R. Burgess, H. Busemann, L. Ruzié-Hamilton, B. Joachim, J. M. Day, and C. J. Ballentine, “Halogens in chondritic meteorites and terrestrial accretion,” Nature 551, 614 (2017).10.1038/nature24625
    [36]
    V. Kovalenko, V. Naumov, A. Girnis, V. Dorofeeva, and V. Yarmolyuk, “Composition and chemical structure of oceanic mantle plumes,” Petrology 14, 452 (2006).10.1134/S0869591106050031
    [37]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [38]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Calypso: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
    [39]
    Y. Lin, Q. Hu, L. Zhu, and Y. Meng, “Structure and stability of iron fluoride at high pressure–temperature and implication for a new reservoir of fluorine in the deep earth,” Minerals 10, 783 (2020).10.3390/min10090783
    [40]
    X. Du, Z. Wang, H. Wang, T. Iitaka, Y. Pan, H. Wang, and J. S. Tse, “Structures and stability of iron halides at the Earth’s mantle and core pressures: Implications for the missing halogen paradox,” ACS Earth Space Chem. 2, 711 (2018).10.1021/acsearthspacechem.8b00034
    [41]
    W. B. Holzapfel, “Structures of the elements – Crystallography and art,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70, 429 (2014).10.1107/s2052520614005277
    [42]
    F. Peng, J. Botana, Y. Wang, Y. Ma, and M. Miao, “Unexpected trend in stability of Xe–F compounds under pressure driven by Xe–Xe covalent bonds,” J. Phys. Chem. Lett. 7, 4562 (2016).10.1021/acs.jpclett.6b01922
    [43]
    N. Zarifi, H. Liu, J. S. Tse, and E. Zurek, “Crystal structures and electronic properties of Xe–Cl compounds at high pressure,” J. Phys. Chem. C 122, 2941 (2018).10.1021/acs.jpcc.7b10810
    [44]
    Z. Liu, J. Botana, A. Hermann, S. Valdez, E. Zurek, D. Yan, H.-q. Lin, and M.-s. Miao, “Reactivity of He with ionic compounds under high pressure,” Nat. Commun. 9, 951 (2018).10.1038/s41467-018-03284-y
    [45]
    M. G. Jackson, J. G. Konter, and T. W. Becker, “Primordial helium entrained by the hottest mantle plumes,” Nature 542, 340 (2017).10.1038/nature21023
    [46]
    J. Siebert, J. Badro, D. Antonangeli, and F. J. Ryerson, “Terrestrial accretion under oxidizing conditions,” Science 339, 1194 (2013).10.1126/science.1227923
    [47]
    E. Anders and T. Owen, “Mars and Earth: Origin and abundance of volatiles: Mars has only 3 percent of Earth’s share of volatiles, but got them from the same meteoritic source,” Science 198, 453 (1977).10.1126/science.198.4316.453
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (200) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return