Citation: | Zhang Jurong, Liu Hanyu, Chen Changfeng, Ma Yanming. Sequestration of helium and xenon via iron-halide compounds in early Earth[J]. Matter and Radiation at Extremes, 2024, 9(3): 037403. doi: 10.1063/5.0164149 |
[1] |
M. Ozima and F. Podosek, “Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe,” J. Geophys. Res.: Solid Earth 104, 25493, (1999).10.1029/1999jb900257
|
[2] |
M. A. Bouhifd, A. P. Jephcoat, V. S. Heber, and S. P. Kelley, “Helium in Earth’s early core,” Nat. Geosci. 6, 982 (2013).10.1038/ngeo1959
|
[3] |
R. O. Pepin, “On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles,” Icarus 92, 2 (1991).10.1016/0019-1035(91)90036-s
|
[4] |
R. O. Pepin and D. Porcelli, “Origin of noble gases in the terrestrial planets,” Rev. Mineral. Geochem. 47, 191 (2002).10.2138/rmg.2002.47.7
|
[5] |
A. P. Jephcoat, “Rare-gas solids in the Earth’s deep interior,” Nature 393, 355 (1998).10.1038/30712
|
[6] |
L. Zhu, H. Liu, C. J. Pickard, G. Zou, and Y. Ma, “Reactions of xenon with iron and nickel are predicted in the Earth’s inner core,” Nat. Chem. 6, 644 (2014).10.1038/nchem.1925
|
[7] |
R. Hoppe, W. Dähne, H. Mattauch, and K. Rödder, “Fluorination of xenon,” Angew Chem. Int. Ed. Engl. 1, 599 (1962).10.1002/anie.196205992
|
[8] |
D. Smith, “Xenon trioxide,” J. Am. Chem. Soc. 85, 816 (1963).10.1021/ja00889a036
|
[9] |
L. Graham, O. Graudejus, N. K. Jha, and N. Bartlett, “Concerning the nature of XePtF6,” Coord. Chem. Rev 197, 321 (2000).10.1016/S0010-8545(99)00190-3
|
[10] |
L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
|
[11] |
M. Miao, Y. Sun, H. Liu, and Y. Ma, “Open questions on the high-pressure chemistry of the noble gases,” Commun. Chem. 5, 15 (2022).10.1038/s42004-022-00631-5
|
[12] |
X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G.-R. Qian, Q. Zhu, C. Gatti, and V. L. Deringer, “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440 (2017).10.1038/nchem.2716
|
[13] |
A. Dewaele, N. Worth, C. J. Pickard, R. J. Needs, S. Pascarelli, O. Mathon, M. Mezouar, and T. Irifune, “Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure,” Nat. Chem. 8, 784 (2016).10.1038/nchem.2528
|
[14] |
A. Hermann and P. Schwerdtfeger, “Xenon suboxides stable under pressure,” J. Phys. Chem. Lett. 5, 4336 (2014).10.1021/jz502230b
|
[15] |
M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, “Pressure-induced bonding and compound formation in xenon–hydrogen solids,” Nat. Chem. 2, 50 (2010).10.1038/nchem.445
|
[16] |
M.-s. Miao, X.-l. Wang, J. Brgoch, F. Spera, M. G. Jackson, G. Kresse, and H.-q. Lin, “Anionic chemistry of noble gases: Formation of Mg–ng (NG = Xe, Kr, Ar) compounds under pressure,” J. Am. Chem. Soc. 137, 14122 (2015).10.1021/jacs.5b08162
|
[17] |
E. Stavrou, Y. Yao, A. F. Goncharov, S. S. Lobanov, J. M. Zaug, H. Liu, E. Greenberg, and V. B. Prakapenka, “Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions,” Phys. Rev. Lett. 120, 096001 (2018).10.1103/physrevlett.120.096001
|
[18] |
B. Monserrat, M. Martinez-Canales, R. J. Needs, and C. J. Pickard, “Helium-iron compounds at terapascal pressures,” Phys. Rev. Lett. 121, 015301 (2018).10.1103/physrevlett.121.015301
|
[19] |
C. Liu, H. Gao, Y. Wang, R. J. Needs, C. J. Pickard, J. Sun, H.-T. Wang, and D. Xing, “Multiple superionic states in helium–water compounds,” Nat. Phys. 15, 1065 (2019).10.1038/s41567-019-0568-7
|
[20] |
J. Shi, W. Cui, J. Hao, M. Xu, X. Wang, and Y. Li, “Formation of ammonia–helium compounds at high pressure,” Nat. Commun. 11, 3164 (2020).10.1038/s41467-020-16835-z
|
[21] |
Y. Bai, Z. Liu, J. Botana, D. Yan, H.-Q. Lin, J. Sun, C. J. Pickard, R. J. Needs, and M.-S. Miao, “Electrostatic force driven helium insertion into ammonia and water crystals under pressure,” Commun. Chem. 2, 102 (2019).10.1038/s42004-019-0204-6
|
[22] |
H. Gao, J. Sun, C. J. Pickard, and R. J. Needs, “Prediction of pressure-induced stabilization of noble-gas-atom compounds with alkali oxides and alkali sulfides,” Phys. Rev. Mater. 3, 015002 (2019).10.1103/physrevmaterials.3.015002
|
[23] |
C. Sanloup, H.-k. Mao, and R. J. Hemley, “High-pressure transformations in xenon hydrates,” Proc. Natl. Acad. Sci. U. S. A. 99, 25 (2002).10.1073/pnas.221602698
|
[24] |
G. T. Sill and L. L. Wilkening, “Ice clathrate as a possible source of the atmospheres of the terrestrial planets,” Icarus 33, 13 (1978).10.1016/0019-1035(78)90020-9
|
[25] |
J. F. Wacker and E. Anders, “Trapping of xenon in ice: Implications for the origin of the Earth’s noble gases,” Geochim. Cosmochim. Acta 48, 2373 (1984).10.1016/0016-7037(84)90232-1
|
[26] |
J. i. Matsuda and K. Matsubara, “Noble gases in silica and their implication for the terrestrial “missing” Xe,” Geophys. Res. Lett. 16, 81, (1989).10.1029/gl016i001p00081
|
[27] |
C. Sanloup, B. C. Schmidt, E. M. C. Perez, A. Jambon, E. Gregoryanz, and M. Mezouar, “Retention of xenon in quartz and Earth’s missing xenon,” Science 310, 1174 (2005).10.1126/science.1119070
|
[28] |
Q. Zhu, D. Y. Jung, A. R. Oganov, C. W. Glass, C. Gatti, and A. O. Lyakhov, “Stability of xenon oxides at high pressures,” Nat. Chem. 5, 61 (2013).10.1038/nchem.1497
|
[29] |
K. K. Lee and G. Steinle‐Neumann, “High‐pressure alloying of iron and xenon:“Missing” Xe in the Earth’s core?,” J. Geophys. Res.: Solid Earth 111, B02202, (2006).10.1029/2005jb003781
|
[30] |
J. Zhang, J. Lv, H. Li, X. Feng, C. Lu, S. A. Redfern, H. Liu, C. Chen, and Y. Ma, “Rare helium-bearing compound FeO2He stabilized at deep-earth conditions,” Phys. Rev. Lett. 121, 255703 (2018).10.1103/physrevlett.121.255703
|
[31] |
F. Peng, X. Song, C. Liu, Q. Li, M. Miao, C. Chen, and Y. Ma, “Xenon iron oxides predicted as potential Xe hosts in Earth’s lower mantle,” Nat. Commun. 11, 5227 (2020).10.1038/s41467-020-19107-y
|
[32] |
W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chem. Geol 120, 223 (1995).10.1016/0009-2541(94)00140-4
|
[33] |
B. Fegley, Jr, K. Lodders, and N. S. Jacobson, “Volatile element chemistry during accretion of the Earth,” Geochem. 80, 125594 (2020).10.1016/j.chemer.2019.125594
|
[34] |
N. Braukmüller, F. Wombacher, C. Funk, and C. Münker, “Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source,” Nat. Geosci 12, 564 (2019).10.1038/s41561-019-0375-x
|
[35] |
P. L. Clay, R. Burgess, H. Busemann, L. Ruzié-Hamilton, B. Joachim, J. M. Day, and C. J. Ballentine, “Halogens in chondritic meteorites and terrestrial accretion,” Nature 551, 614 (2017).10.1038/nature24625
|
[36] |
V. Kovalenko, V. Naumov, A. Girnis, V. Dorofeeva, and V. Yarmolyuk, “Composition and chemical structure of oceanic mantle plumes,” Petrology 14, 452 (2006).10.1134/S0869591106050031
|
[37] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
|
[38] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Calypso: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063 (2012).10.1016/j.cpc.2012.05.008
|
[39] |
Y. Lin, Q. Hu, L. Zhu, and Y. Meng, “Structure and stability of iron fluoride at high pressure–temperature and implication for a new reservoir of fluorine in the deep earth,” Minerals 10, 783 (2020).10.3390/min10090783
|
[40] |
X. Du, Z. Wang, H. Wang, T. Iitaka, Y. Pan, H. Wang, and J. S. Tse, “Structures and stability of iron halides at the Earth’s mantle and core pressures: Implications for the missing halogen paradox,” ACS Earth Space Chem. 2, 711 (2018).10.1021/acsearthspacechem.8b00034
|
[41] |
W. B. Holzapfel, “Structures of the elements – Crystallography and art,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70, 429 (2014).10.1107/s2052520614005277
|
[42] |
F. Peng, J. Botana, Y. Wang, Y. Ma, and M. Miao, “Unexpected trend in stability of Xe–F compounds under pressure driven by Xe–Xe covalent bonds,” J. Phys. Chem. Lett. 7, 4562 (2016).10.1021/acs.jpclett.6b01922
|
[43] |
N. Zarifi, H. Liu, J. S. Tse, and E. Zurek, “Crystal structures and electronic properties of Xe–Cl compounds at high pressure,” J. Phys. Chem. C 122, 2941 (2018).10.1021/acs.jpcc.7b10810
|
[44] |
Z. Liu, J. Botana, A. Hermann, S. Valdez, E. Zurek, D. Yan, H.-q. Lin, and M.-s. Miao, “Reactivity of He with ionic compounds under high pressure,” Nat. Commun. 9, 951 (2018).10.1038/s41467-018-03284-y
|
[45] |
M. G. Jackson, J. G. Konter, and T. W. Becker, “Primordial helium entrained by the hottest mantle plumes,” Nature 542, 340 (2017).10.1038/nature21023
|
[46] |
J. Siebert, J. Badro, D. Antonangeli, and F. J. Ryerson, “Terrestrial accretion under oxidizing conditions,” Science 339, 1194 (2013).10.1126/science.1227923
|
[47] |
E. Anders and T. Owen, “Mars and Earth: Origin and abundance of volatiles: Mars has only 3 percent of Earth’s share of volatiles, but got them from the same meteoritic source,” Science 198, 453 (1977).10.1126/science.198.4316.453
|
![]() |
![]() |