Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 3
May  2020
Turn off MathJax
Article Contents
Mao Ho-kwang, Mao Wendy L.. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3): 038102. doi: 10.1063/1.5139023
Citation: Mao Ho-kwang, Mao Wendy L.. Key problems of the four-dimensional Earth system[J]. Matter and Radiation at Extremes, 2020, 5(3): 038102. doi: 10.1063/1.5139023

Key problems of the four-dimensional Earth system

doi: 10.1063/1.5139023
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: maohk@hpstar.ac.cn. Tel.: +(86) 183-2111-7482
  • Received Date: 2019-11-17
  • Accepted Date: 2020-03-31
  • Available Online: 2020-05-01
  • Publish Date: 2020-05-15
  • Compelling evidence indicates that the solid Earth consists of two physicochemically distinct zones separated radially in the middle of the lower mantle at ∼1800 km depth. The inner zone is governed by pressure-induced physics and chemistry dramatically different from the conventional behavior in the outer zone. These differences generate large physical and chemical potentials between the two zones that provide fundamental driving forces for triggering major events in Earth’s history. One of the main chemical carriers between the two zones is H2O in hydrous minerals that subducts into the inner zone, releases hydrogen, and leaves oxygen to create superoxides and form oxygen-rich piles at the core–mantle boundary, resulting in localized net oxygen gain in the inner zone. Accumulation of oxygen-rich piles at the base of the mantle could eventually reach a supercritical level that triggers eruptions, injecting materials that cause chemical mantle convection, superplumes, large igneous provinces, extreme climate changes, atmospheric oxygen fluctuations, and mass extinctions. Interdisciplinary research will be the key for advancing a unified theory of the four-dimensional Earth system.
  • loading
  • [1]
    S. B. Shirey and S. H. Richardson, “Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle,” Science 333, 434–436 (2011).10.1126/science.1206275 doi: 10.1126/science.1206275
    [2]
    R. E. Ernst and N. Youbi, “How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 478, 30–52 (2017).10.1016/j.palaeo.2017.03.014 doi: 10.1016/j.palaeo.2017.03.014
    [3]
    H. D. Holland, “Volcanic gases, black smokers, and the great oxidation event,” Geochim. Cosmochim. Acta 66, 3811–3826 (2002).10.1016/s0016-7037(02)00950-x doi: 10.1016/s0016-7037(02)00950-x
    [4]
    P. F. Hoffman, A. J. Kaufman, G. P. Halverson, and D. P. Schrag, “A neoproterozoic snowball earth,” Science 281, 1342–1346 (1998).10.1126/science.281.5381.1342 doi: 10.1126/science.281.5381.1342
    [5]
    H. K. Mao, Q. Hu, L. Yang, J. Liu, D. Y. Kim, Y. Meng, L. Zhang, V. B. Prakapenka, W. Yang, and W. L. Mao, “When water meets iron at Earth’s core-mantle boundary,” Natl. Sci. Rev. 4, 870–878 (2017).10.1093/nsr/nwx109 doi: 10.1093/nsr/nwx109
    [6]
    J. Liu, Q. Hu, D. Y. Kim, Z. Wu, W. Wang, Y. Xiao, P. Chow, Y. Meng, V. B. Prakapenka, H. K. Mao, and W. L. Mao, “Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones,” Nature 551, 494–497 (2017).10.1038/nature24461 doi: 10.1038/nature24461
    [7]
    Q. Hu, D. Y. Kim, J. Liu, Y. Meng, L. Yang, D. Zhang, W. L. Mao, and H. K. Mao, “Dehydrogenation of goethite in Earth’s deep lower mantle,” Proc. Natl. Acad. Sci. U. S. A. 114, 1498–1501 (2017).10.1073/pnas.1620644114 doi: 10.1073/pnas.1620644114
    [8]
    Q. Hu, D. Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, and H. K. Mao, “FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles,” Nature 534, 241–244 (2016).10.1038/nature18018 doi: 10.1038/nature18018
    [9]
    M. Nishi, Y. Kuwayama, J. Tsuchiya, and T. Tsuchiya, “The pyrite-type high-pressure form of FeOOH,” Nature 547, 205–208 (2017).10.1038/nature22823 doi: 10.1038/nature22823
    [10]
    L. Yuan, E. Ohtani, D. Ikuta, S. Kamada, J. Tsuchiya, H. Naohisa, Y. Ohishi, and A. Suzuki, “Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth’s mantle and core,” Geophys. Res. Lett. 45, 1330–1338, https://doi.org/10.1002/2017gl075720 (2018).10.1002/2017gl075720 doi: 10.1002/2017gl075720
    [11]
    E. Boulard, F. o. Guyot, N. Menguy, A. Corgne, A.-L. Auzende, J.-P. Perrillat, and G. Fiquet, “CO2-induced destabilization of pyrite-structured FeO2Hx in the lower mantle,” Natl. Sci. Rev. 5, 870 (2018).10.1093/nsr/nwy1032 doi: 10.1093/nsr/nwy1032
    [12]
    W. Alvarez, E. G. Kauffman, F. Surlyk, L. W. Alvarez, F. Asaro, and H. V. Michel, “Impact theory of mass extinctions and the invertebrate fossil record,” Science 223, 1135–1141 (1984).10.1126/science.223.4641.1135 doi: 10.1126/science.223.4641.1135
    [13]
    T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, “The rise of oxygen in Earth’s early ocean and atmosphere,” Nature 506, 307–315 (2014).10.1038/nature13068 doi: 10.1038/nature13068
    [14]
    M. Santosh, S. Maruyama, and S. Yamamoto, “The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere,” Gondwana Res. 15, 324–341 (2009).10.1016/j.gr.2008.11.004 doi: 10.1016/j.gr.2008.11.004
    [15]
    L. Coes, “A new dense crystalline silica,” Science 118, 131–132 (1953).10.1126/science.118.3057.131 doi: 10.1126/science.118.3057.131
    [16]
    W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov, E. Stavrou, M. Somayazulu, V. B. Prakapenka, and Z. Konopkova, “Unexpected stable stoichiometries of sodium chlorides,” Science 342, 1502–1505 (2013).10.1126/science.1244989 doi: 10.1126/science.1244989
    [17]
    J. Badro, J.-P. Rueff, G. Vanko, G. Monaco, G. Fiquet, and F. Guyot, “Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle,” Science 305, 383–385 (2004).10.1126/science.1098840 doi: 10.1126/science.1098840
    [18]
    A. F. Goncharov, V. V. Struzhkin, M. S. Somayazulu, R. J. Hemley, and H. K. Mao, “Compression of ice to 210 GPa: Evidence for a symmetric hydrogen bonded phase,” Science 273, 218–220 (1996).10.1126/science.273.5272.218 doi: 10.1126/science.273.5272.218
    [19]
    [20]
    T. Lay, J. Hernlund, and B. A. Buffett, “Core–mantle boundary heat flow,” Nat. Geosci. 1, 25–32 (2008).10.1038/ngeo.2007.44 doi: 10.1038/ngeo.2007.44
    [21]
    T. Lay, Q. Williams, and E. J. Garnero, “The core-mantle boundary layer and deep Earth dyamics,” Nature 392, 461–468 (1998).10.1038/33083 doi: 10.1038/33083
    [22]
    L. Zhang, H. Yuan, Y. Meng, and H. K. Mao, “Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH,” Proc. Natl. Acad. Sci. U. S. A. 115, 2908–2911 (2018).10.1073/pnas.1720510115 doi: 10.1073/pnas.1720510115
    [23]
    H. K. Mao, X.-J. Chen, Y. Ding, B. Li, and L. Wang, “Solids, liquids, and gases under high pressure,” Rev. Mod. Phys. 90, 015007 (2018).10.1103/revmodphys.90.015007 doi: 10.1103/revmodphys.90.015007
    [24]
    T. S. Duffy, “Synchrotron facilities and the study of the earth’s deep interior,” Rep. Prog. Phys. 68, 1811–1859 (2005).10.1088/0034-4885/68/8/r03 doi: 10.1088/0034-4885/68/8/r03
    [25]
    G. Shen and H. K. Mao, “High-pressure studies with x-rays using diamond anvil cells,” Rep. Prog. Phys. 80, 016101 (2017).10.1088/1361-6633/80/1/016101 doi: 10.1088/1361-6633/80/1/016101
    [26]
    H. K. Mao and P. M. Bell, “Electrical conductivity and the red shift of absorption in olivine and spinel at high pressure,” Science 176, 403–406 (1972).10.1126/science.176.4033.403 doi: 10.1126/science.176.4033.403
    [27]
    S. Merkel, A. F. Goncharov, H. K. Mao, P. Gillet, and R. J. Hemley, “Raman spectroscopy of iron to 152 gigapascals: Implications for Earth’s inner core,” Science 288, 1626–1629 (2000).10.1126/science.288.5471.1626 doi: 10.1126/science.288.5471.1626
    [28]
    H. K. Mao, J. Xu, V. V. Struzhkin, J. Shu, R. J. Hemley, W. Sturhahn, M. Hu, E. Alp, L. Vocadlo, D. Alfè, G. D. Price, M. J. Gillan, M. Schwoerer-Böhning, D. Häusermann, P. Eng, G. Shen, H. Giefers, R. Lübbers, and G. Wortmann, “Phonon density of states of iron up to 153 GPa,” Science 292, 914–916 (2001).10.1126/science.1057670 doi: 10.1126/science.1057670
    [29]
    W. L. Mao, H. K. Mao, W. Sturhahn, J. Zhao, V. B. Prakapenka, Y. Meng, J. Shu, Y. Fei, and R. J. Hemley, “Iron-rich post-perovskite and the origin of ultralow-velocity zones,” Science 312, 564–565 (2006).10.1126/science.1123442 doi: 10.1126/science.1123442
    [30]
    A. Shahar, E. A. Schauble, R. Caracas, A. E. Gleason, M. M. Reagan, Y. Xiao, J. Shu, and W. Mao, “Pressure-dependent isotopic composition of iron alloys,” Science 352, 580–582 (2016).10.1126/science.aad9945 doi: 10.1126/science.aad9945
    [31]
    J. Liu, N. Dauphas, M. Roskosz, M. Y. Hu, H. Yang, W. Bi, J. Zhao, E. E. Alp, J. Y. Hu, and J.-F. Lin, “Iron isotopic fractionation between silicate mantle and metallic core at high pressure,” Nat. Commun. 8, 14377 (2017).10.1038/ncomms14377 doi: 10.1038/ncomms14377
    [32]
    G. Fiquet, J. Badro, F. Guyot, H. Requardt, and M. Krisch, “Sound velocities in iron to 110 gigapascals,” Science 291, 468–471 (2001).10.1126/science.291.5503.468 doi: 10.1126/science.291.5503.468
    [33]
    H. O. Sørensen, S. Schmidt, J. P. Wright, G. B. M. Vaughan, S. Techert, E. F. Garman, J. Oddershede, J. Davaasambu, K. S. Paithankar, C. Gundlach, and a. H. F. Poulsen, “Multigrain crystallography,” Z. Kristallogr. 227, 63–78 (2012).10.1524/zkri.2012.1438 doi: 10.1524/zkri.2012.1438
    [34]
    L. Zhang, Y. Meng, W. Yang, L. Wang, W. L. Mao, Q.-S. Zeng, J. S. Jeong, A. J. Wagner, K. A. Mkhoyan, W. Liu, R. Xu, and H. K. Mao, “Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle,” Science 344, 877–882 (2014).10.1126/science.1250274 doi: 10.1126/science.1250274
    [35]
    C. Y. Shi, L. Zhang, W. Yang, Y. Liu, J. Wang, Y. Meng, J. C. Andrews, and W. L. Mao, “Formation of an interconnected network of iron melt at Earth’s lower mantle conditions,” Nat. Geosci. 6, 971–975 (2013).10.1038/ngeo1956 doi: 10.1038/ngeo1956
    [36]
    S. A. Peacock, “Fluid processes in subduction zones,” Science 248, 329–337 (1990).10.1126/science.248.4953.329 doi: 10.1126/science.248.4953.329
    [37]
    P. E. van Keken, B. R. Hacker, E. M. Syracuse, and G. A. Abers, “Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide,” J. Geophys. Res. 116, B01401, https://doi.org/10.1029/2010jb007922 (2011).10.1029/2010jb007922 doi: 10.1029/2010jb007922
    [38]
    B. Schmandt, S. D. Jacobsen, T. W. Becker, Z. Liu, and K. G. Dueker, “Dehydration melting at the top of the lower mantle,” Science 344, 1265–1268 (2014).10.1126/science.1253358 doi: 10.1126/science.1253358
    [39]
    L. J. Hallis, G. R. Huss, K. Nagashima, G. J. Taylor, S. A. Halldórsson, D. R. Hilton, M. J. Mottl, and K. J. Meech, “Evidence for primordial water in Earth’s deep mantle,” Science 350, 795–797 (2015).10.1126/science.aac4834 doi: 10.1126/science.aac4834
    [40]
    M. Nishi, T. Irifune, J. Tsuchiya, Y. Tange, Y. Nishihara, K. Fujino, and Y. Higo, “Stability of hydrous silicate at high pressures and water transport to the deep lower mantle,” Nat. Geosci. 7, 224–227 (2014).10.1038/ngeo2074 doi: 10.1038/ngeo2074
    [41]
    I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, and M. Nishijima, “Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle,” Earth Planet. Sci. Lett. 401, 12–17 (2014).10.1016/j.epsl.2014.05.059 doi: 10.1016/j.epsl.2014.05.059
    [42]
    J. P. Townsend, J. Tsuchiya, C. R. Bina, and S. D. Jacobsen, “Water partitioning between bridgmanite and postperovskite in the lowermost mantle,” Earth Planet. Sci. Lett. 454, 20–27 (2016).10.1016/j.epsl.2016.08.009 doi: 10.1016/j.epsl.2016.08.009
    [43]
    M. Nishi, “Mantle hydration,” Nat. Geosci. 8, 9–10 (2015).10.1038/ngeo2326 doi: 10.1038/ngeo2326
    [44]
    Y. Lin, Q. Hu, Y. Meng, M. Walter, and H. K. Mao, “Evidence for water entering the lower mantle from the stability of an ultrahydrous stishovite at high pressure and temperature,” Proc. Natl. Acad. Sci. U. S. A. 117, 184–189 (2020).10.1073/pnas.1914295117 doi: 10.1073/pnas.1914295117
    [45]
    M. Palot, S. D. Jacobsen, J. P. Townsend, F. Nestola, K. Marquardt, N. Miyajima, J. W. Harris, T. Stachel, C. A. McCammon, and D. G. Pearson, “Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion,” Lithos 265, 237–243 (2016).10.1016/j.lithos.2016.06.023 doi: 10.1016/j.lithos.2016.06.023
    [46]
    O. Tschauner, S. Huang, E. Greenberg, V. B. Prakapenka, C. Ma, G. R. Rossman, A. H. Shen, D. Zhang, M. Newville, A. Lanzirotti, and K. Tait, “Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle,” Science 359, 1136–1139 (2018).10.1126/science.aao3030 doi: 10.1126/science.aao3030
    [47]
    S.-c. Zhu, Q. Hu, W. L. Mao, H. K. Mao, and H. Sheng, “Hydrogen-bond symmetrization breakdown and dehydrogenation mechanism of FeO2H at high pressure,” J. Am. Chem. Soc. 139, 12129–12132 (2017).10.1021/jacs.7b06528 doi: 10.1021/jacs.7b06528
    [48]
    T. C. Fitzgibbons, M. Guthrie, E.-s. Xu, V. H. Crespi, S. K. Davidowski, G. D. Cody, N. Alem, and J. V. Badding, “Benzene-derived carbon nanothreads,” Nat. Mater. 14, 43 (2014).10.1038/NMAT4088 doi: 10.1038/NMAT4088
    [49]
    S. S. Lobanov, P.-N. Chen, X.-J. Chen, C.-S. Zha, K. D. Litasov, H. K. Mao, and A. F. Goncharov, “Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors,” Nat. Commun. 4, 2446 (2013).10.1038/ncomms3446 doi: 10.1038/ncomms3446
    [50]
    T. Okuchi, “Hydrogen partitioning into molten iron at high pressure: Implications for Earth’s core,” Science 278, 1781–1784 (1997).10.1126/science.278.5344.1781 doi: 10.1126/science.278.5344.1781
    [51]
    C. McCammon, “The paradox of mantle redox,” Science 308, 807–808 (2005).10.1126/science.1110532 doi: 10.1126/science.1110532
    [52]
    P. M. Bell, H. K. Mao, R. A. Weeks, and A. V. Valkenburg, “High-pressure disproportionation study of iron in synthetic basalt glass,” Carnegie Inst. Washington Yearb. 75, 515–520 (1976).
    [53]
    P. M. Bell and H. K. Mao, “Preliminary evidence of disproportionation of ferrous iron in silicates at high pressures and temperatures,” Carnegie Inst. Washington Yearb. 74, 557–559 (1975).
    [54]
    D. J. Frost, C. Liebske, F. Langenhorst, C. A. McCammon, R. G. Trønnes, and D. C. Rubie, “Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle,” Nature 428, 409–412 (2004).10.1038/nature02413 doi: 10.1038/nature02413
    [55]
    J. Zhang, J. Lv, H. Li, X. Feng, C. Lu, S. A. T. Redfern, H. Liu, C. Chen, and Y. Ma, “Rare helium-bearing compound FeO2He stabilized at deep-Earth conditions,” Phys. Rev. Lett. 121, 255703 (2018).10.1103/physrevlett.121.255703 doi: 10.1103/physrevlett.121.255703
    [56]
    J. Liu, Q. Hu, W. Bi, L. Yang, Y. Xiao, P. Chow, Y. Meng, V. B. Prakapenka, H. K. Mao, and W. L. Mao, “Altered chemistry of oxygen and iron under Earth conditions,” Nat. Commun. 10, 153 (2018).10.1038/s41467-018-08071-3 doi: 10.1038/s41467-018-08071-3
    [57]
    E. Boulard, M. Harmand, F. Guyot, G. Lelong, G. Morard, D. Cabaret, S. Boccato, A. D. Rosa, R. Briggs, S. Pascarelli, and G. Fiquet, “Ferrous iron under oxygen-rich conditions in the deep mantle,” Geophys. Res. Lett. 46, 1348–1356, https://doi.org/10.1029/2019gl081922 (2019).10.1029/2019gl081922 doi: 10.1029/2019gl081922
    [58]
    L. F. Lundegaard, G. Weck, M. I. McMahon, S. Desgreniers, and P. Loubeyre, “Observation of an O8 molecular lattice in the e phase of solid oxygen,” Nature 443, 201–204 (2006).10.1038/nature05174 doi: 10.1038/nature05174
    [59]
    Y. Meng, P. J. Eng, J. S. Tse, D. M. Shaw, M. Y. Hu, J. Shu, S. A. Gramsch, C.-c. Kao, R. J. Hemley, and H. K. Mao, “Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding,” Proc. Natl. Acad. Sci. U. S. A. 105, 11640–11644 (2008).10.1073/pnas.0805601105 doi: 10.1073/pnas.0805601105
    [60]
    C. Holzapfel, D. Rubie, C. Frost, and F. Langenhorst, “Fe-Mg interdiffusion in (Mg,Fe)SiO3 perovskite and lower mantle reequilibration,” Science 309, 1707–1710 (2005).10.1126/science.1111895 doi: 10.1126/science.1111895
    [61]
    J. D. Frantz and H. K. Mao, “Bimetasomatism resulting from intergranular diffusion: II. Prediction of multimineralic zone sequences,” Am. J. Sci. 279, 302–323 (1979).10.2475/ajs.279.3.302 doi: 10.2475/ajs.279.3.302
    [62]
    D. L. Anderson, “The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs,” Earth Planet. Sci. Lett. 123, 269–280 (1994).10.1016/0012-821x(94)90273-9 doi: 10.1016/0012-821x(94)90273-9
    [63]
    S. J. Baker, S. P. Hesselbo, T. M. Lenton, L. s. V. Duarte, and C. M. Belcher, “Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia,” Nat. Commun. 8, 15018 (2017).10.1038/ncomms15018 doi: 10.1038/ncomms15018
    [64]
    D. A. Stolper and C. B. Keller, “A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts,” Nature 553, 323–327 (2018).10.1038/nature25009 doi: 10.1038/nature25009
    [65]
    K. Zhang, X. Zhu, R. A. Wood, Y. Shi, Z. Gao, and S. W. Poulton, “Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes,” Nat. Geosci. 11, 345–350 (2018).10.1038/s41561-018-0111-y doi: 10.1038/s41561-018-0111-y
    [66]
    R. E. Kopp, J. L. Kirschvink, I. A. Hilburn, and C. Z. Nash, “The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis,” Proc. Natl. Acad. Sci. U. S. A. 102, 11131–11136 (2005).10.1073/pnas.0504878102 doi: 10.1073/pnas.0504878102
    [67]
    A. Schmidt, R. A. Skeffngton, T. Thordarson, S. Self, P. M. Forster, A. Rap, A. Ridgwell, D. Fowler, M. Wilson, G. W. Mann, P. B. Wignall, and K. S. Carslaw, “Selective environmental stress from sulphur emitted by continental flood basalt eruptions,” Nat. Geosci. 9, 77 (2016).10.1038/ngeo2588 doi: 10.1038/ngeo2588
    [68]
    A. D. Barnosky, N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, and E. A. Ferrer, “Has the Earth’s sixth mass extinction already arrived?,” Nature 471, 51–57 (2011).10.1038/nature09678 doi: 10.1038/nature09678
    [69]
    M. R. Rampino, “Mass extinctions of life and catastrophic flood basalt volcanism,” Proc. Natl. Acad. Sci. U. S. A. 107, 6555–6556 (2010).10.1073/pnas.1002478107 doi: 10.1073/pnas.1002478107
    [70]
    S. E. Peters, “Environmental determinants of extinction selectivity in the fossil record,” Nature 454, 626–629 (2008).10.1038/nature07032 doi: 10.1038/nature07032
    [71]
    C.-T. A. Lee, L. Y. Yeung, N. R. McKenzie, Y. Yokoyama, K. Ozaki, and A. Lenardic, “Two-step rise of atmospheric oxygen linked to the growth of continents,” Nat. Geosci. 9, 417–424 (2016).10.1038/ngeo2707 doi: 10.1038/ngeo2707
    [72]
    T. Gu, M. Li, C. McCammon, and K. K. M. Lee, “Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen,” Nat. Geosci. 9, 723–727 (2016).10.1038/ngeo2772 doi: 10.1038/ngeo2772
    [73]
    D. Andrault, M. Muñoz, G. Pesce, V. Cerantola, A. Chumakov, I. Kantor, S. Pascarelli, R. Rüffer, and L. Hennet, “Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event,” Geochem. Perspect. Lett. 6, 5–10 (2018).10.7185/geochemlet.1801 doi: 10.7185/geochemlet.1801
    [74]
    M. S. Duncan and R. Dasgupta, “Rise of Earth’s atmospheric oxygen controlled by effcient subduction of organic carbon,” Nat. Geosci. 10, 387–392 (2017).10.1038/ngeo2939 doi: 10.1038/ngeo2939
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (703) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return