Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 5 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
Tanaka K. A., Spohr K. M., Balabanski D. L., Balascuta S., Capponi L., Cernaianu M. O., Cuciuc M., Cucoanes A., Dancus I., Dhal A., Diaconescu B., Doria D., Ghenuche P., Ghita D. G., Kisyov S., Nastasa V., Ong J. F., Rotaru F., Sangwan D., Söderström P.-A., Stutman D., Suliman G., Tesileanu O., Tudor L., Tsoneva N., Ur C. A., Ursescu D., Zamfir N. V.. Current status and highlights of the ELI-NP research program[J]. Matter and Radiation at Extremes, 2020, 5(2): 024402. doi: 10.1063/1.5093535
Citation: Tanaka K. A., Spohr K. M., Balabanski D. L., Balascuta S., Capponi L., Cernaianu M. O., Cuciuc M., Cucoanes A., Dancus I., Dhal A., Diaconescu B., Doria D., Ghenuche P., Ghita D. G., Kisyov S., Nastasa V., Ong J. F., Rotaru F., Sangwan D., Söderström P.-A., Stutman D., Suliman G., Tesileanu O., Tudor L., Tsoneva N., Ur C. A., Ursescu D., Zamfir N. V.. Current status and highlights of the ELI-NP research program[J]. Matter and Radiation at Extremes, 2020, 5(2): 024402. doi: 10.1063/1.5093535

Current status and highlights of the ELI-NP research program

doi: 10.1063/1.5093535
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: kazuo.tanaka@eli-np.ro
  • Received Date: 2019-06-06
  • Accepted Date: 2020-02-09
  • Available Online: 2020-03-01
  • Publish Date: 2020-03-15
  • The emergence of a new era reaching beyond current state-of-the-art ultrashort and ultraintense laser technology has been enabled by the approval of around 850 million worth of structural funds in 2011–2012 by the European Commission for the installation of Extreme Light Infrastructure (ELI). The ELI project consists of three pillars being built in the Czech Republic, Hungary, and Romania. This challenging proposal is based on recent technical progress allowing ultraintense laser fields in which intensities will soon be reaching as high as I0 ∼ 1023 W cm−2. This tremendous technological advance has been brought about by the invention of chirped pulse amplification by Mourou and Strickland. Romania is hosting the ELI for Nuclear Physics (ELI-NP) pillar in Măgurele near Bucharest. The new facility, currently under construction, is intended to serve the broad national, European, and international scientific community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first is laser-driven experiments related to NP, strong-field quantum electrodynamics, and associated vacuum effects. The second research domain is based on the establishment of a Compton-backscattering-based, high-brilliance, and intense γ beam with Eγ ≲ 19.5 MeV, which represents a merger between laser and accelerator technology. This system will allow the investigation of the nuclear structure of selected isotopes and nuclear reactions of relevance, for example, to astrophysics with hitherto unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact will be developed. The implementation of the project started in January 2013 and is spearheaded by the ELI-NP/Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH). Experiments will begin in early 2020.
  • loading
  • [1]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8
    [2]
    G. A. Mourou, “Nobel lecture: Extreme light physics and application,” Rev. Mod. Phys. 91, 030501 (2019).10.1103/revmodphys.91.030501 doi: 10.1103/revmodphys.91.030501
    [3]
    G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006).10.1103/RevModPhys.78.309 doi: 10.1103/RevModPhys.78.309
    [4]
    N. V. Zamfir, “Nuclear physics with 10 PW laser beams at extreme light infrastructure-nuclear physics (ELI-NP),” Eur. Phys. J. Spec. Top. 223, 1221–1227 (2014).10.1140/epjst/e2014-02176-0 doi: 10.1140/epjst/e2014-02176-0
    [5]
    S. Gales, D. L. Balabanski, F. Negoita, O. Tesileanu, C. A. Ur, D. Ursescu, and N. V. Zamfir, “New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams,” Phys. Scr. 91(9), 093004 (2016).10.1088/0031-8949/91/9/093004 doi: 10.1088/0031-8949/91/9/093004
    [6]
    S. Gales, K. A. Tanaka, D. L. Balabanski, F. Negoita, D. Stutman, O. Tesileanu, C. A. Ur, D. Ursescu, A. Andrei, S. Ataman, M. O. Cernaianu, L. D’Alessi, I. Dancus, B. Diaconescu, N. Djourelov, D. Filipescu, P. Ghenuche, D. G. Ghita, C. Matei, K. Seto, M. Zeng, and N. V. Zamfir, “The extreme light infrastructure-nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81(9), 094301 (2018).10.1088/1361-6633/aacfe8 doi: 10.1088/1361-6633/aacfe8
    [7]
    [8]
    [9]
    [10]
    K. W. D. Ledingham and W. Galster, “Laser-driven particle and photon beams and some applications,” New J. Phys. 12(4), 045005 (2010).10.1088/1367-2630/12/4/045005 doi: 10.1088/1367-2630/12/4/045005
    [11]
    A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).10.1103/RevModPhys.85.751 doi: 10.1103/RevModPhys.85.751
    [12]
    S. Weber, S. Bechet, S. Borneis, L. Brabec, M. Bučka, E. Chacon-Golcher, M. Ciappina, M. DeMarco, A. Fajstavr, K. Falk, E.-R. Garcia, J. Grosz, Y.-J. Gu, J.-C. Hernandez, M. Holec, P. Janečka, M. Jantač, M. Jirka, H. Kadlecova, D. Khikhlukha, O. Klimo, G. Korn, D. Kramer, D. Kumar, T. Lastovička, P. Lutoslawski, L. Morejon, V. Olšovcová, M. Rajdl, O. Renner, B. Rus, S. Singh, M. Šmid, M. Sokol, R. Versaci, R. Vrána, M. Vranic, J. Vyskočil, A. Wolf, and Q. Yu, “P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines,” Matter Radiat. Extremes 2(4), 149–176 (2017), exported from https://app.dimensions.ai on 05 February 2019.10.1016/j.mre.2017.03.003 doi: 10.1016/j.mre.2017.03.003
    [13]
    F. Negoita, M. Roth, P. Thirolf, S. Tudisco, F. Hannachi, S. Moustaizis, I. Pomerantz, P. McKenna, J. Fuchs, K. M. Spohr, G. Acbas, A. Anzalone, P. Audebert, S. Balascuta, F. Cappuzzello, M. Cernaianu, S. Chen, I. Dancus, R. Freeman, and N. V. Zamfir, “Laser driven nuclear physics at ELI-NP,” Rom. Rep. Phys. 68, S37 (2016).
    [14]
    J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, “Laser-driven proton scaling laws and new paths towards energy increase,” Nat. Phys. 2, 48–54 (2006).10.1038/nphys199 doi: 10.1038/nphys199
    [15]
    J. M. Dawson, “Particle simulation of plasmas,” Rev. Mod. Phys. 55, 403–447 (1983).10.1103/RevModPhys.55.403 doi: 10.1103/RevModPhys.55.403
    [16]
    T. Z. Esirkepov, M. Borghesi, S. V. Bulanov, G. A. Mourou, and T. Tajima, “Highly efficient relativistic-ion generation in the laser-piston regime,” Phys. Rev. Lett. 92, 175003 (2004).10.1103/PhysRevLett.92.175003 doi: 10.1103/PhysRevLett.92.175003
    [17]
    V. Veksler, “Coherent principle of acceleration of charged particles,” Proc. Symp. CERN 1, 80 (1956).10.5170/CERN-1956-025.80 doi: 10.5170/CERN-1956-025.80
    [18]
    H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75(5), 056401 (2012).10.1088/0034-4885/75/5/056401 doi: 10.1088/0034-4885/75/5/056401
    [19]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, “Energetic proton generation in ultra-intense laser-solid interactions,” Phys. Plasmas 8(2), 542–549 (2001).10.1063/1.1333697 doi: 10.1063/1.1333697
    [20]
    S. Bulanov, T. Esirkepov, V. Khoroshkov, A. Kuznetsov, and F. Pegoraro, “Oncological hadrontherapy with laser ion accelerators,” Phys. Lett. A 299(2), 240–247 (2002).10.1016/s0375-9601(02)00521-2 doi: 10.1016/s0375-9601(02)00521-2
    [21]
    C. Scullion, D. Doria, L. Romagnani, A. Sgattoni, K. Naughton, D. R. Symes, P. McKenna, A. Macchi, M. Zepf, S. Kar, and M. Borghesi, “Polarization dependence of bulk ion acceleration from ultrathin foils irradiated by high-intensity ultrashort laser pulses,” Phys. Rev. Lett. 119, 054801 (2017).10.1103/physrevlett.119.054801 doi: 10.1103/physrevlett.119.054801
    [22]
    A. I. Akhiezer and R. Polovin, “Theory of wave motion of an electron plasma,” Z. Eksp. Teor. Fiz. 30, 915 (1956), http://www.jetp.ac.ru/cgi-bin/dn/e_003_05_0696.pdf.
    [23]
    P. Kaw and J. Dawson, “Relativistic nonlinear propagation of laser beams in cold over dense plasmas,” Phys. Fluids 13, 472 (1970).10.1063/1.1692942 doi: 10.1063/1.1692942
    [24]
    C. Max and F. Perkins, “Strong electromagnetic waves in overdense plasmas,” Phys. Rev. Lett. 27, 1342 (1971).10.1103/PhysRevLett.27.1342 doi: 10.1103/PhysRevLett.27.1342
    [25]
    H. W. Powell, M. King, R. J. Gray, D. A. MacLellan, B. Gonzalez-Izquierdo, L. C. Stockhausen, G. Hicks, N. P. Dover, D. R. Rusby, D. C. Carroll, H. Padda, R. Torres, S. Kar, R. J. Clarke, I. O. Musgrave, Z. Najmudin, M. Borghesi, D. Neely, and P. McKenna, “Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency,” New J. Phys. 17(10), 103033 (2015).10.1088/1367-2630/17/10/103033 doi: 10.1088/1367-2630/17/10/103033
    [26]
    A. Higginson, R. J. Gray, M. King, R. J. Dance, S. D. R. Williamson, N. M. H. Butler, R. Wilson, R. Capdessus, C. Armstrong, J. S. Green, S. J. Hawkes, P. Martin, W. Q. Wei, S. R. Mirfayzi, X. H. Yuan, S. Kar, M. Borghesi, R. J. Clarke, D. Neely, and P. McKenna, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9(1), 724 (2018).10.1038/s41467-018-03063-9 doi: 10.1038/s41467-018-03063-9
    [27]
    C. S. Brady and T. D. Arber, “An ion acceleration mechanism in laser illuminated targets with internal electron density structure,” Plasma Phys. Controlled Fusion 53(1), 015001 (2011).10.1088/0741-3335/53/1/015001 doi: 10.1088/0741-3335/53/1/015001
    [28]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57(11), 113001 (2015).10.1088/0741-3335/57/11/113001 doi: 10.1088/0741-3335/57/11/113001
    [29]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/PhysRevLett.43.267 doi: 10.1103/PhysRevLett.43.267
    [30]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/RevModPhys.81.1229 doi: 10.1103/RevModPhys.81.1229
    [31]
    W. P. Leemans and E. Esarey, “Summary report: Working group 2 on “Plasma based acceleration concepts”,” AIP Conf. Proc. 472(1), 174 (1999).10.1063/1.58900 doi: 10.1063/1.58900
    [32]
    J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, and S. P. D. Mangles, “Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam,” Phys. Rev. X 8, 011020 (2018).10.1103/PhysRevX.8.011020 doi: 10.1103/PhysRevX.8.011020
    [33]
    S. F. Martins, R. A. Fonseca, W. Lu, W. B. Mori, and L. O. Silva, “Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames,” Nat. Phys. 6, 311–316 (2010).10.1038/nphys1538 doi: 10.1038/nphys1538
    [34]
    K. V. Lezhnin, P. V. Sasorov, G. Korn, and S. V. Bulanov, “High power gamma flare generation in multi-petawatt laser interaction with tailored targets,” Phys. Plasmas 25(12), 123105 (2018).10.1063/1.5062849 doi: 10.1063/1.5062849
    [35]
    Y.-J. Gu, M. Jirka, O. Klimo, and S. Weber, “Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations,” Matter Radiat. Extremes 4(6), 064403 (2019).10.1063/1.5098978 doi: 10.1063/1.5098978
    [36]
    T. Nakamura, J. K. Koga, T. Z. Esirkepov, M. Kando, G. Korn, and S. V. Bulanov, “High-power γ-ray flash generation in ultraintense laser-plasma interactions,” Phys. Rev. Lett. 108, 195001 (2012).10.1103/physrevlett.108.195001 doi: 10.1103/physrevlett.108.195001
    [37]
    R. Capdessus, E. d’Humières, and V. T. Tikhonchuk, “Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities,” Phys. Rev. Lett. 110, 215003 (2013).10.1103/PhysRevLett.110.215003 doi: 10.1103/PhysRevLett.110.215003
    [38]
    [39]
    P. Raczka, J.-L. Dubois, S. Hulin, V. Tikhonchuk, M. Rosiński, A. Zaraś-Szydłowska, and J. Badziak, “Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets,” Laser Part. Beams 35(4), 677–686 (2017).10.1017/S026303461700074X doi: 10.1017/S026303461700074X
    [40]
    [41]
    H. Chen, A. J. Link, R. van Maren, P. K. Patel, R. Shepherd, S. C. Wilks, and P. Beiersdorfer, “High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions,” Rev. Sci. Instrum. 79(10), 10E533 (2008).10.1063/1.2953679 doi: 10.1063/1.2953679
    [42]
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. G. Cadenas, I. González, G. G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. D. Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. Wellisch, T. Wenaus, D. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, “Geant4—A simulation toolkit,” Nucl. Instrum. Methods Phys. Res. Sect. A 506(3), 250–303 (2003).10.1016/S0168-9002(03)01368-8 doi: 10.1016/S0168-9002(03)01368-8
    [43]
    D. A. Dahl, “Simion for the personal computer in reflection,” Int. J. Mass Spectrom. 200, 3–25 (2000).10.1016/S1387-3806(00)00305-5 doi: 10.1016/S1387-3806(00)00305-5
    [44]
    R. Weber, J. E. Balmer, and P. Lädrach, “Thomson parabola time-of-flight ion spectrometer,” Rev. Sci. Instrum. 57(7), 1251–1253 (1986).10.1063/1.1138637 doi: 10.1063/1.1138637
    [45]
    R. Prasad, D. Doria, S. Ter-Avetisyan, P. S. Foster, K. E. Quinn, L. Romagnani, C. M. Brenner, J. S. Green, P. Gallegos, M. J. V. Streeter, D. C. Carroll, O. Tresca, N. Dover, C. A. J. Palmer, J. Schreiber, D. Neely, Z. Najmudin, and P. McKenna, “Calibration of Thomson parabola—MCP assembly for multi-MeV ion spectroscopy,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(2), 712–715 (2010).10.1016/j.nima.2010.02.078 doi: 10.1016/j.nima.2010.02.078
    [46]
    A. Alejo, D. Gwynne, D. Doria, H. Ahmed, D. Carroll, R. Clarke, D. Neely, G. Scott, M. Borghesi, and S. Kar, “Recent developments in the Thomson parabola spectrometer diagnostic for laser-driven multi-species ion sources,” J. Instrum. 11, C10005 (2016).10.1088/1748-0221/11/10/C10005 doi: 10.1088/1748-0221/11/10/C10005
    [47]
    X. Ribeyre, E. d’Humières, O. Jansen, S. Jequier, V. T. Tikhonchuk, and M. Lobet, “Pair creation in collision of γ-ray beams produced with high-intensity lasers,” Phys. Rev. E 93, 013201 (2016).10.1103/PhysRevE.93.013201 doi: 10.1103/PhysRevE.93.013201
    [48]
    G. Glenn, G. Tiwari, G. Dyer, C. Curry, M. Donovan, E. Gaul, M. Gauthier, S. Glenzer, J. Gordon, B. Hegelich, M. Martinez, E. McCary, M. Spinks, and T. Ditmire, “Improved large-energy-range magnetic electron-positron spectrometer for experiments with the Texas Petawatt Laser,” J. Instrum. 14(03), P03012 (2019).10.1088/1748-0221/14/03/p03012 doi: 10.1088/1748-0221/14/03/p03012
    [49]
    S. Singh, R. Versaci, A. Laso Garcia, L. Morejon, A. Ferrari, M. Molodtsova, R. Schwengner, D. Kumar, and T. Cowan, “Compact high energy x-ray spectrometer based on forward Compton scattering for high intensity laser plasma experiments,” Rev. Sci. Instrum. 89(8), 085118 (2018).10.1063/1.5040979 doi: 10.1063/1.5040979
    [50]
    D. Haden, G. Golovin, W. Yan, C. Fruhling, P. Zhang, B. Zhao, S. Banerjee, and D. Umstadter, “High energy x-ray Compton spectroscopy via iterative reconstruction,” Nucl. Instrum. Methods Phys. Res., Sect. A 951, 163032 (2020).10.1016/j.nima.2019.163032 doi: 10.1016/j.nima.2019.163032
    [51]
    Y. Rhee, S. Nam, J. Peebles, H. Sawada, M. Wei, X. Vaisseau, T. Sasaki, L. Giuffrida, S. Hulin, B. Vauzour, J. Santos, D. Batani, H. Mclean, P. Patel, Y. Li, D. Yuan, K. Zhang, J. Zhong, C. Fu, and C. Nam, “Spectral tomographic analysis of bremsstrahlung X-rays generated in a laser-produced plasma,” Laser Part. Beams 34, 645–654 (2016).10.1017/S0263034616000604 doi: 10.1017/S0263034616000604
    [52]
    D. R. Rusby, C. D. Armstrong, C. M. Brenner, R. J. Clarke, P. McKenna, and D. Neely, “Novel scintillator-based x-ray spectrometer for use on high repetition laser plasma interaction experiments,” Rev. Sci. Instrum. 89(7), 073502 (2018).10.1063/1.5019213 doi: 10.1063/1.5019213
    [53]
    J. Allison et al., “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).10.1016/j.nima.2016.06.125 doi: 10.1016/j.nima.2016.06.125
    [54]
    R. Brun and F. Rademakers, “Root: An object oriented data analysis framework,” Nucl. Instrum. Methods Phys. Res., Sect. A A389, 81–86 (1997).10.1016/S0168-9002(97)00048-X doi: 10.1016/S0168-9002(97)00048-X
    [55]
    W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/PhysRevLett.113.245002 doi: 10.1103/PhysRevLett.113.245002
    [56]
    M. Vargas, W. Schumaker, Z.-H. He, Z. Zhao, K. Behm, V. Chvykov, B. Hou, K. Krushelnick, A. Maksimchuk, V. Yanovsky, and A. Thomas, “Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets,” Appl. Phys. Lett. 104(17), 174103 (2014).10.1063/1.4874981 doi: 10.1063/1.4874981
    [57]
    G. M. Samarin, M. Zepf, and G. Sarri, “Radiation reaction studies in an all-optical set-up: Experimental limitations,” J. Mod. Opt. 65(11), 1362–1369 (2018).10.1080/09500340.2017.1353655 doi: 10.1080/09500340.2017.1353655
    [58]
    K. M. Spohr, M. Shaw, W. Galster, K. W. D. Ledingham, L. Robson, J. M. Yang, P. McKenna, T. McCanny, J. J. Melone, K.-U. Amthor, F. Ewald, B. Liesfeld, H. Schwoerer, and R. Sauerbrey, “Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons,” New J. Phys. 10(4), 043037 (2008).10.1088/1367-2630/10/4/043037 doi: 10.1088/1367-2630/10/4/043037
    [59]
    J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res., Sect. B 219-220, 1027–1036 (2004), Proceedings of the Sixteenth International Conference on Ion Beam Analysis.10.1016/j.nimb.2004.01.208 doi: 10.1016/j.nimb.2004.01.208
    [60]
    A. Cucoanes, M. Gugiu, F. Rotaru, F. Negoita, L. Tudor, S. Kisyov, C. Manailescu, and V. Nastasa, “Radiochromic film calibration at 9 MV accelerator of IFIN-HH,” Romanian Acad. A 20(1), 29–36 (2019).
    [61]
    D. L. Balabanski, R. Popescu, D. Stutman, K. A. Tanaka, O. Tesileanu, C. A. Ur, D. Ursescu, and N. V. Zamfir, “New light in nuclear physics: The extreme light infrastructure,” EPL (Europhys. Lett.) 117(2), 28001 (2017).10.1209/0295-5075/117/28001 doi: 10.1209/0295-5075/117/28001
    [62]
    D. Filipescu, A. Anzalone, D. L. Balabanski, S. S. Belyshev, F. Camera, M. La Cognata, P. Constantin, L. Csige, P. V. Cuong, M. Cwiok, V. Derya, W. Dominik, M. Gai, S. Gales, I. Gheorghe, B. S. Ishkhanov, A. Krasznahorkay, A. A. Kuznetsov, C. Mazzocchi, V. N. Orlin, N. Pietralla, M. Sin, C. Spitaleri, K. A. Stopani, O. Tesileanu, C. A. Ur, I. Ursu, H. Utsunomiya, V. V. Varlamov, H. R. Weller, N. V. Zamfir, and A. Zilges, “Perspectives for photonuclear research at the Extreme Light Infrastructure-nuclear physics (ELI-NP) facility,” Eur. Phys. J. A 51(12), 185 (2015).10.1140/epja/i2015-15185-9 doi: 10.1140/epja/i2015-15185-9
    [63]
    U. Kneissl and A. Zilges, “The nuclear resonance fluorescence method,” in Landolt-Börnstein: Group I: Elementary Particles, Nuclei and Atoms (Springer-Verlag, Berlin, Heidelberg, 2012), Vol. 25B, pp. 30–47.
    [64]
    C. A. Ur, A. Zilges, N. Pietralla, J. Beller, B. Boisdeffre, M. Cernaianu, V. Derya, B. Loeher, C. Matei, G. Pascovici, C. Petcu, C. Romig, D. Savarn, G. Suliman, E. Udup, and V. Werner, “Nuclear resonance fluorescence experiments at ELI-NP,” Rom. Rep. Phys. 68, S483–S538 (2016).
    [65]
    H. Scraggs, C. Pearson, G. Hackman, M. Smith, R. Austin, G. Ball, A. Boston, P. Bricault, R. Chakrawarthy, R. Churchman, N. Cowan, G. Cronkhite, E. Cunningham, T. Drake, P. Finlay, P. Garrett, G. Grinyer, B. Hyland, B. Jones, J. Leslie, J.-P. Martin, D. Morris, A. Morton, A. Phillips, F. Sarazin, M. Schumaker, C. Svensson, J. Valiente-Dobon, J. Waddington, L. Watters, and L. Zimmerman, “TIGRESS highly-segmented high-purity germanium clover detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 543, 431–440 (2005).10.1016/j.nima.2004.12.012 doi: 10.1016/j.nima.2004.12.012
    [66]
    P.-G. Reinhard and W. Nazarewicz, “Information content of a new observable: The case of the nuclear neutron skin,” Phys. Rev. C 81, 051303 (2010).10.1103/PhysRevC.81.051303 doi: 10.1103/PhysRevC.81.051303
    [67]
    K. M. Spohr, K. Ledingham, R. Chapman, M. Hassan, J. Melone, S. Pain, and J. Smith, “Precision measurement of the dipole polarizability αD of 208Pb with high intensity, monoenergetic MeV γ radiation for the evaluation of neutron skin and the enhancement of UNEDF theory,” in The White Book of ELI Nuclear Physics, ELI-NP/IFIN-HH, edited by J. Chambaret, R. Dabu, and D. Ursescu (■, 2010), Chap. 5, pp. 92–94.
    [68]
    J. Piekarewicz, “Pygmy resonances and neutron skins,” Phys. Rev. C 83, 034319 (2011).10.1103/PhysRevC.83.034319 doi: 10.1103/PhysRevC.83.034319
    [69]
    X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz, “Electric dipole polarizability in 208Pb: Insights from the droplet model,” Phys. Rev. C 88, 024316 (2013).10.1103/PhysRevC.88.024316 doi: 10.1103/PhysRevC.88.024316
    [70]
    O. Bohigas, N. Van Giai, and D. Vautherin, “Selfconsistent description of the static nuclear dipole polarizability,” Phys. Lett. B 102, 105–108 (1981).10.1016/0370-2693(81)91040-6 doi: 10.1016/0370-2693(81)91040-6
    [71]
    T. Hashimoto, A. M. Krumbholz, P.-G. Reinhard, A. Tamii, P. von Neumann-Cosel, T. Adachi, N. Aoi, C. A. Bertulani, H. Fujita, Y. Fujita, E. Ganioğlu, K. Hatanaka, E. Ideguchi, C. Iwamoto, T. Kawabata, N. T. Khai, A. Krugmann, D. Martin, H. Matsubara, K. Miki, R. Neveling, H. Okamura, H. J. Ong, I. Poltoratska, V. Yu. Ponomarev, A. Richter, H. Sakaguchi, Y. Shimbara, Y. Shimizu, J. Simonis, F. D. Smit, G. Süsoy, T. Suzuki, J. H. Thies, M. Yosoi, and J. Zenihiro, “Dipole polarizability of 120Sn and nuclear energy density functionals,” Phys. Rev. C 92, 031305 (2015).10.1103/PhysRevC.92.031305 doi: 10.1103/PhysRevC.92.031305
    [72]
    A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y. Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsubara, K. Nakanishi, R. Neveling, H. Okamura, H. J. Ong, B. Özel-Tashenov, V. Y. Ponomarev, A. Richter, B. Rubio, H. Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F. D. Smit, T. Suzuki, Y. Tameshige, J. Wambach, R. Yamada, M. Yosoi, and J. Zenihiro, “Complete electric dipole response and the neutron skin in 208Pb,” Phys. Rev. Lett. 107, 062502 (2011).10.1103/PhysRevLett.107.062502 doi: 10.1103/PhysRevLett.107.062502
    [73]
    F. Camera, H. Utsunomiya, D. Varlamov, D. Filipescu, V. Baran, A. Bracco, G. Colò, I. Gheorghe, T. Glodariu, C. Matei, and O. Wieland, “Gamma above the neutron threshold experiments at ELI-NP,” Rom. Rep. Phys. 68, S539–S619 (2016).
    [74]
    M. Krzysiek, F. Camera, D. Filipescu, H. Utsunomiya, G. Colò, I. Gheorghe, and Y. Niu, “Simulation of the ELIGANT-GN array performances at ELI-NP for gamma beam energies larger than neutron threshold,” Nucl. Instrum. Methods Phys. Res., Sect. A 916, 257–274 (2019).10.1016/j.nima.2018.11.058 doi: 10.1016/j.nima.2018.11.058
    [75]
    M. Krzysiek, H. Utsunomiya, I. Gheorghe, D. Filipescu, T. Renstrom, G. Tveten, S. Belyshev, K. Stopani, H. Wang, G. Fan, Y. Lui, D. Symochko, S. Goriely, A. Larsen, S. Siem, V. Varlamov, B. Ishkhanov, T. Ari-izumi, and S. Miyamoto, “Photoneutron cross-section measurements for 165Ho by the direct neutron-multiplicity sorting technique at NewSUBARU,” Acta Phys. Pol. B 50(3), 487–494 (2018).10.5506/aphyspolb.50.487 doi: 10.5506/aphyspolb.50.487
    [76]
    B. L. Berman and S. C. Fultz, “Measurements of the giant dipole resonance with monoenergetic photons,” Rev. Mod. Phys. 47, 713–761 (1975).10.1103/RevModPhys.47.713 doi: 10.1103/RevModPhys.47.713
    [77]
    H. Utsunomiya, Y. Yonezawa, H. Akimune, T. Yamagata, M. Ohta, M. Fujishiro, H. Toyokawa, and H. Ohgaki, “Photodisintegration of 9Be with laser-induced Compton backscattered γ rays,” Phys. Rev. C 63, 018801 (2000).10.1103/PhysRevC.63.018801 doi: 10.1103/PhysRevC.63.018801
    [78]
    C. W. Arnold, T. B. Clegg, C. Iliadis, H. J. Karwowski, G. C. Rich, J. R. Tompkins, and C. R. Howell, “Cross-section measurement of 9Be(γ, n)8Be and implications for α + α + n → 9Be in the r process,” Phys. Rev. C 85, 044605 (2012).10.1103/physrevc.85.044605 doi: 10.1103/physrevc.85.044605
    [79]
    H. Utsunomiya, S. Katayama, I. Gheorghe, S. Imai, H. Yamaguchi, D. Kahl, Y. Sakaguchi, T. Shima, K. Takahisa, and S. Miyamoto, “Photodisintegration of 9Be through the 1/2+ state and cluster dipole resonance,” Phys. Rev. C 92, 064323 (2015).10.1103/PhysRevC.92.064323 doi: 10.1103/PhysRevC.92.064323
    [80]
    D. Balabanski, F. Ibrahim, A. Krasnahorkay, I. Boztosun, D. Choudhury, S. Coban, P. Constantin, L. Csige, P. Cuong, T. Dickel, H. Djapo, I. Dobrin, S. Essabaa, D. Filipescu, S. Franchoo, G. Georgiev, I. Gheorghe, D. G. Ghita, T. Glodariu, M. Gupta, A. Jokinen, J. Kaur, N. Marginean, R. Marginean, I. Moore, H. Pentilla, C. Petcu, P. Plass, T. Sava, G. Savard, C. Scheidenberger, and D. Yordanov, “Photofission experiments at ELI-NP,” Rom. Rep. Phys. 68, S621–S698 (2016).
    [81]
    O. Tesileanu, M. Gai, M. Anzalone, C. Balan, J. Bihalowicz, M. Cwiok, W. Dominik, S. Gales, D. G. Ghita, Z. Janos, D. Kendellen, M. La Cognata, C. Matei, K. Mikszuta, C. Petcu, M. Pfützner, T. Matulewicz, C. Mazzocchi, and C. Spitaleri, “Charged particle detection at ELI-NP,” Rom. Rep. Phys. 68, S699–S734 (2016).
    [82]
    A. Krasznahorkay, “Tunnelling through triple-humped fission barriers,” in Handbook of Nuclear Chemistry, edited by A. Vertes (Springer, New York, 2011), pp. 281–318.
    [83]
    M. Cwiok, M. Bieda, J. Bihalowicz, Z. Dominik, W. Janas, L. Janiak, J. Mańczak, T. Matulewicz, C. Mazzocchi, M. Pfützner, P. Podlaski, S. Sharma, M. Zaremba, D. L. Balabanski, A. Bey, D. G. Ghita, O. Tesileanu, and M. Gai, “A TPC detector for studying photo-nuclear reactions at astrophysical energies with gamma-ray beams at ELI–NP,” Acta Phys. Pol. B 49, 509–514 (2018).10.5506/APhysPolB.49.509 doi: 10.5506/APhysPolB.49.509
    [84]
    M. Gai, D. Schweitzer, S. R. Stern, A. H. Young, R. Smith, M. Cwiok, J. S. Bihalowicz, H. Czyrkowski, R. Dabrowski, W. Dominik, A. Fijalkowska, Z. Janas, L. Janiak, A. Korgul, T. Matulewicz, C. Mazzocchi, M. Pfützner, M. Zaremba, D. Balabanski, I. Gheorghe, C. Matei, O. Tesileanu, N. V. Zamfir, M. W. Ahmed, S. S. Henshaw, C. R. Howell, J. M. Mueller, L. S. Myers, S. Stave, C. Sun, H. R. Weller, Y. K. Wu, A. Breskin, V. Dangendorf, K. Tittelmeier, and M. Freer, “Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams,” Nucl. Instrum. Methods Phys. Res., Sect. A 954, 161779 (2020).10.1016/j.nima.2019.01.006 doi: 10.1016/j.nima.2019.01.006
    [85]
    D. Savran, T. Aumann, and A. Zilges, “Experimental studies of the pygmy dipole resonance,” Prog. Part. Nucl. Phys. 70, 210 (2013).10.1016/j.ppnp.2013.02.003 doi: 10.1016/j.ppnp.2013.02.003
    [86]
    N. Tsoneva and H. Lenske, “Pygmy quadrupole resonance in skin nuclei,” Phys. Lett. B 695, 174 (2011).10.1016/j.physletb.2010.11.002 doi: 10.1016/j.physletb.2010.11.002
    [87]
    L. Pellegri, A. Bracco, N. Tsoneva, R. Avigo, G. Benzoni, N. Blasi, S. Bottoni, F. Camera, S. Ceruti, F. C. L. Crespi, A. Giaz, S. Leoni, H. Lenske, B. Million, A. I. Morales, R. Nicolini, O. Wieland, D. Bazzacco, P. Bednarczyk, B. Birkenbach, M. Ciemała, G. de Angelis, E. Farnea, A. Gadea, A. Görgen, A. Gottardo, J. Grebosz, R. Isocrate, M. Kmiecik, M. Krzysiek, S. Lunardi, A. Maj, K. Mazurek, D. Mengoni, C. Michelagnoli, D. R. Napoli, F. Recchia, B. Siebeck, S. Siem, C. A. Ur, and J. J. Valiente-Dobón, “Multitude of 2+ discrete states in 124Sn observed via the (17O, 17O′γ) reaction: Evidence for pygmy quadrupole states,” Phys. Rev. C 92, 014330 (2015).10.1103/physrevc.92.014330 doi: 10.1103/physrevc.92.014330
    [88]
    M. Spieker, N. Tsoneva, V. Derya, D. S. J. Endres, P. Butler, M. N. Harakeh, S. Harissopulos, R.-D. Herzberg, R. Krücken, A. Lagoyannis, H. Lenske, N. Pietralla, L. Popescu, M. Scheck, F. Schlüter, V. S. K. Sonnabend, H. Wörtche, and A. Zilges, “The pygmy quadrupole resonance and neutron-skin modes in 124Sn,” Phys. Lett. B 752, 102–107 (2016).10.1016/j.physletb.2015.11.004 doi: 10.1016/j.physletb.2015.11.004
    [89]
    N. Tsoneva, H. Lenske, and C. Stoyanov, “Probing the nuclear neutron skin by low-energy dipole modes,” Phys. Lett. B 586, 213 (2004).10.1016/j.physletb.2004.02.024 doi: 10.1016/j.physletb.2004.02.024
    [90]
    N. Tsoneva and H. Lenske, “Pygmy dipole resonances in the tin region,” Phys. Rev. C 77, 024321 (2008).10.1103/physrevc.77.024321 doi: 10.1103/physrevc.77.024321
    [91]
    A. Bracco, F. C. L. Crespi, and E. G. Lanza, “Gamma decay of pygmy states from inelastic scattering of ions,” Eur. Phys. J. A 51(8), 99 (2015).10.1140/epja/i2015-15099-6 doi: 10.1140/epja/i2015-15099-6
    [92]
    N. Paar, D. Vretenar, E. Khan, and G. Colò, “Exotic modes of excitation in atomic nuclei far from stability,” Rep. Prog. Phys. 70(5), 691–793 (2007).10.1088/0034-4885/70/5/r02 doi: 10.1088/0034-4885/70/5/r02
    [93]
    N. Tsoneva and H. Lenske, “Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics,” Phys. At. Nucl. 79(6), 885–903 (2016).10.1134/S1063778816060247 doi: 10.1134/S1063778816060247
    [94]
    V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press, Oxford, 1976).
    [95]
    M. Grinberg and C. Stoyanov, “Distribution of two-phonon strength in even N = 82 nuclei,” Nucl. Phys. A 573, 231 (1994).10.1016/0375-9474(94)90169-4 doi: 10.1016/0375-9474(94)90169-4
    [96]
    V. Ponomarev, C. Stoyanov, N. Tsoneva, and M. Grinberg, “Boson forbidden low-energy E1-transitions in spherical nuclei,” Nucl. Phys. A 635(4), 470–483 (1998).10.1016/S0375-9474(98)00187-0 doi: 10.1016/S0375-9474(98)00187-0
    [97]
    A. Tonchev, N. Tsoneva, C. Bhatia, C. Arnold, S. Goriely, S. Hammond, J. Kelley, E. Kwan, H. Lenske, J. Piekarewicz, R. Raut, G. Rusev, T. Shizuma, and W. Tornow, “Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis,” Phys. Lett. B 773, 20 (2017).10.1016/j.physletb.2017.07.062 doi: 10.1016/j.physletb.2017.07.062
    [98]
    N. Tsoneva, M. Spieker, H. Lenske, and A. Zilges, “Fine structure of the pygmy quadrupole resonance in 112,114Sn,” Nucl. Phys. A 990, 183–198 (2019).10.1016/j.nuclphysa.2019.07.008 doi: 10.1016/j.nuclphysa.2019.07.008
    [99]
    R. Raut, A. P. Tonchev, G. Rusev, W. Tornow, C. Iliadis, M. Lugaro, J. Buntain, S. Goriely, J. H. Kelley, R. Schwengner, A. Banu, and N. Tsoneva, Cross-section measurements of the 86Kr(γ, n) reaction to probe the s-process branching at 85Kr, Phys. Rev. Lett. 111, 112501 (2013).10.1103/physrevlett.111.112501 doi: 10.1103/physrevlett.111.112501
    [100]
    N. Tsoneva, S. Goriely, H. Lenske, and R. Schwengner, “Pygmy resonances and radiative nucleon captures for stellar nucleosynthesis,” Phys. Rev. C 91, 044318 (2015).10.1103/PhysRevC.91.044318 doi: 10.1103/PhysRevC.91.044318
    [101]
    G. Priebe, D. Laundy, M. Macdonald, G. Diakun, S. Jamison, L. Jones, D. Holder, S. Smith, P. Phillips, B. Fell, B. Sheehy, N. Naumova, I. Sokolov, S. Ter-Avetisyan, K. M. Spohr, G. A. Krafft, J. B. Rosenzweig, U. Schramm, F. Grüner, G. J. Hirst, J. Collier, S. Chattopadhyay, and E. A. Seddon, “Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury,” Laser Part Beams 26(4), 649–660 (2008).10.1017/S0263034608000700 doi: 10.1017/S0263034608000700
    [102]
    G. Priebe, D. Filippetto, O. Williams, Y. M. Saveliev, L. B. Jones, D. Laundy, M. A. MacDonald, G. P. Diakun, P. J. Phillips, S. P. Jamison, K. M. Spohr, S. Ter-Avetisyan, G. J. Hirst, J. Collier, E. A. Seddon, and S. L. Smith, “Status of the inverse Compton backscattering source at Daresbury laboratory,” Nucl. Instrum. Methods Phys. Res., Sect. A 608, S109–S112 (2009).10.1016/j.nima.2009.05.090 doi: 10.1016/j.nima.2009.05.090
    [103]
    S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic beams of relativistic electrons from intense laser–plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939 doi: 10.1038/nature02939
    [104]
    C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900 doi: 10.1038/nature02900
    [105]
    J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. P. Rousseau, F. Burgy, and V. Malka, “A laser–plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963 doi: 10.1038/nature02963
    [106]
    W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2, 696–699 (2006).10.1038/nphys418 doi: 10.1038/nphys418
    [107]
    K. Homma, O. Tesileanu, L. D’Alessi, T. Hasebe, A. Ilderton, T. Moritaka, Y. Nakamiya, K. Seto, H. Utsunomiya, and Y. Xu, “Combined laser gamma experiment at ELI-NP,” Rom. Rep. Phys. 68, S233 (2016).
    [108]
    H. Ejiri, T. Shima, S. Miyamoto, K. Horikawa, Y. Kitagawa, Y. Asano, S. Daté, and Y. Ohashi, “Resonant photonuclear reactions for isotope transmutation,” J. Phys. Soc. Jpn. 80(9), 094202 (2011).10.1143/jpsj.80.094202 doi: 10.1143/jpsj.80.094202
    [109]
    H. Ejiri and T. Shima, “Resonant photonuclear isotope detection using medium-energy photon beam,” Phys. Rev. Spec. Top.--Accel. Beams 15, 024701 (2012).10.1103/PhysRevSTAB.15.024701 doi: 10.1103/PhysRevSTAB.15.024701
    [110]
    S. M. Seltzer and M. J. Berger, “Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons,” Nucl. Instrum. Methods Phys. Res., Sect. B 12(1), 95–134 (1985).10.1016/0168-583X(85)90707-4 doi: 10.1016/0168-583X(85)90707-4
    [111]
    K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photonics 6, 308–311 (2012).10.1038/nphoton.2012.82 doi: 10.1038/nphoton.2012.82
    [112]
    C. Yu, R. Qi, W. Wang, J. Liu, W. Li, C. Wang, Z. Zhang, J. Liu, Z. Qin, M. Fang, K. Feng, Y. Wu, Y. Tian, Y. Xu, F. Wu, Y. Leng, X. Weng, J. Wang, F. Wei, Y. Yi, Z. Song, R. Li, and Z. Xu, “Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering,” Sci. Rep. 6, 29518 (2016).10.1038/srep29518 doi: 10.1038/srep29518
    [113]
    H.-E. Tsai, X. Wang, J. M. Shaw, Z. Li, A. V. Arefiev, X. Zhang, R. Zgadzaj, W. Henderson, V. Khudik, G. Shvets, and M. C. Downer, “Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror,” Phys. Plasmas 22(2), 023106 (2015).10.1063/1.4907655 doi: 10.1063/1.4907655
    [114]
    H.-E. Tsai, A. V. Arefiev, J. M. Shaw, D. J. Stark, X. Wang, R. Zgadzaj, and M. C. Downer, “Self-aligning concave relativistic plasma mirror with adjustable focus,” Phys. Plasmas 24(1), 013106 (2017).10.1063/1.4973432 doi: 10.1063/1.4973432
    [115]
    J. F. Ong, W. R. Teo, T. Moritaka, and H. Takabe, “Radiation reaction in the interaction of ultraintense laser with matter and gamma-ray source,” Phys. Plasmas 23(5), 053117 (2016).10.1063/1.4952626 doi: 10.1063/1.4952626
    [116]
    J. F. Ong, T. Moritaka, and H. Takabe, “The suppression of radiation reaction and laser field depletion in laser-electron beam interaction,” Phys. Plasmas 25(3), 033113 (2018).10.1063/1.5012937 doi: 10.1063/1.5012937
    [117]
    J. F. Ong, K. Seto, A. C. Berceanu, S. Aogaki, and L. Neagu, “Feasibility studies of an all-optical and compact γ-ray blaster using a 1 PW laser pulse,” Plasma Phys. Controlled Fusion 61(8), 084009 (2019).10.1088/1361-6587/ab283a doi: 10.1088/1361-6587/ab283a
    [118]
    S. Ataman, M. Cuciuc, L. D’Alessi, L. Neagu, M. Rosu, K. Seto, O. Tesileanu, Y. Xu, and M. Zeng, “Experiments with combined laser and gamma beams at ELI-NP,” AIP Conf. Proc. 1852(1), 070002 (2017).10.1063/1.4984872 doi: 10.1063/1.4984872
    [119]
    [120]
    C. de Jager, B. Wojtsekhowski, D. Tedeschi, B. Vlahovic, D. Abbott, J. Asai, G. Feldman, T. Hotta, M. Khadaker, H. Kohri, T. Matsumara, T. Mibe, T. Nakano, V. Nelyubin, G. Orielly, A. Rudge, P. Weilhammer, M. Wood, T. Yorita, and R. Zegers, “A pair polarimeter for linearly polarized high energy photons,” Eur. Phys. J. A 19(1), 275–278 (2004).10.1140/epjad/s2004-03-045-5 doi: 10.1140/epjad/s2004-03-045-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views (961) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return