Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
Zhang Guanghui, Yi Wencai, Cao Yiqing, Zhang Shengli, Liu Xiaobing. Activation of N≡N bonds by CN4 tetrahedron leading to energetic carbon polynitrides under high pressure[J]. Matter and Radiation at Extremes, 2025, 10(5): 057801. doi: 10.1063/5.0282879
Citation: Zhang Guanghui, Yi Wencai, Cao Yiqing, Zhang Shengli, Liu Xiaobing. Activation of N≡N bonds by CN4 tetrahedron leading to energetic carbon polynitrides under high pressure[J]. Matter and Radiation at Extremes, 2025, 10(5): 057801. doi: 10.1063/5.0282879

Activation of N≡N bonds by CN4 tetrahedron leading to energetic carbon polynitrides under high pressure

doi: 10.1063/5.0282879
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: yiwc@qfnu.edu.cn; zhangslvip@njust.edu.cn; and xiaobing.phy@qfnu.edu.cn
  • Received Date: 2025-05-28
  • Accepted Date: 2025-08-03
  • Available Online: 2025-11-28
  • Publish Date: 2025-09-01
  • The activation of the N≡N triple bond in N2 is a fascinating topic in nitrogen chemistry. The transition metals have been demonstrated to effectively modulate the reactivity of N2 molecules under high pressure, leading to nitrogen-rich compounds. However, their use often results in a significant reduction in energy density. In this work, we propose a series of low-enthalpy nitrogen-rich phases in CNx (x = 3, …, 7) compounds using a first-principles crystal structure search method. The results of calculations reveal that all these CN compounds are assembled from both CN4 tetrahedra and Nx (x = 1, 2, or 5) species. Strikingly, we find that the CN4 tetrahedron can effectively activate the N≡N bond through weakening of the π orbital of N2 under a pressure of 40 GPa, leading to stable CN polynitrides. The robust structural framework of CN polynitrides containing C–N and N–N bonds plays a crucial role in enhancing their structural stability, energy density, and hardness. Among these polynitrides, CN6 possesses not only a very high mass density of 3.19 g/cm3, but also an ultrahigh energy density of 28.94 kJ/cm3, which represents a significant advance in the development of energetic materials using high-pressure methods. This work provides new insights into the mechanism of N2 activation under high pressure, and offers a promising pathway to realize high-performance energetic materials.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Guanghui Zhang: Data curation (equal); Investigation (equal); Writing – original draft (equal). Wencai Yi: Conceptualization (equal); Funding acquisition (equal); Methodology (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Yiqing Cao: Investigation (equal); Validation (equal). Shengli Zhang: Methodology (equal); Supervision (equal). Xiaobing Liu: Conceptualization (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available within the article and its supplementary material.
  • loading
  • [1]
    K. O. Christe, “Polynitrogen chemistry enters the ring,” Science 355, 351 (2017).10.1126/science.aal5057
    [2]
    Q. Lin, P. Wang, Y. Xu, and M. Lu, “Pentazolate anion cyclo-N5−: Development of a new energetic material,” Engineering 6, 964–966 (2020).10.1016/j.eng.2020.04.011
    [3]
    S. Li, Y. Wang, C. Qi, X. Zhao, J. Zhang et al., “3D energetic metal–organic frameworks: Synthesis and properties of high energy materials,” Angew. Chem., Int. Ed. 52, 14031–14035 (2013).10.1002/anie.201307118
    [4]
    D. R. Miller, D. C. Swenson, and E. G. Gillan, “Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides,” J. Am. Chem. Soc. 126, 5372–5373 (2004).10.1021/ja048939y
    [5]
    M. Benz, T. M. Klapötke, J. Stierstorfer, and M. Voggenreiter, “Synthesis and characterization of binary, highly endothermic, and extremely sensitive 2,2′-azobis(5-azidotetrazole),” J. Am. Chem. Soc. 144, 6143–6147 (2022).10.1021/jacs.2c00995
    [6]
    T. M. Klapötke, F. A. Martin, and J. Stierstorfer, “C2N14: An energetic and highly sensitive binary azidotetrazole,” Angew. Chem., Int. Ed. 50, 4227–4229 (2011).10.1002/anie.201100300
    [7]
    M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, and R. Gilardi, “Polyazido high-nitrogen compounds: Hydrazo- and azo-1,3,5-triazine,” Angew. Chem., Int. Ed. 43, 4924–4928 (2004).10.1002/anie.200460366
    [8]
    C. Qi, S.-H. Li, Y.-C. Li, Y. Wang, X.-X. Zhao et al., “Synthesis and promising properties of a new family of high-nitrogen compounds: Polyazido- and polyamino-substituted N,N′-azo-1,2,4-triazoles,” Chem. - Eur. J. 18, 16562–16570 (2012).10.1002/chem.201202428
    [9]
    F. Lu, E. Wang, J. Huang, M. Huang, F. Nie et al., “The synthesis, property and reduction of high-nitrogen compound 3,3′,5,5′-tetraazido-4,4′-bis(1,2,4-triazole),” Polyhedron 117, 445–452 (2016).10.1016/j.poly.2016.06.025
    [10]
    D. Laniel, F. Trybel, A. Aslandukov, S. Khandarkhaeva, T. Fedotenko et al., “Synthesis of ultra-incompressible and recoverable carbon nitrides featuring CN4 tetrahedra,” Adv. Mater. 36, 2308030 (2024).10.1002/adma.202308030
    [11]
    F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
    [12]
    W. Yi, X. Jiang, T. Yang, B. Yang, Z. Liu et al., “Crystalline structures and energetic properties of lithium pentazolate under ambient conditions,” ACS Omega 5, 24946–24953 (2020).10.1021/acsomega.0c03835
    [13]
    C. Choi, H.-W. Yoo, E. M. Goh, S. G. Cho, and Y. Jung, “Ti(N5)4 as a potential nitrogen-rich stable high-energy density material,” J. Phys. Chem. A 120, 4249–4255 (2016).10.1021/acs.jpca.6b04226
    [14]
    S. Lin, J. Chen, B. Zhang, J. Hao, M. Xu et al., “Lanthanium nitride LaN9 featuring azide units: The first metal nine-nitride as a high-energy-density material,” Phys. Chem. Chem. Phys. 26, 3605–3613 (2024).10.1039/d3cp06155h
    [15]
    S. Lin, M. Xu, J. Hao, and Y. Li, “Pressure stabilized polymeric nitrogen in N2F and N10F compounds,” Results Phys. 43, 106093 (2022).10.1016/j.rinp.2022.106093
    [16]
    M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher et al., “Nitrogen fixation and reduction at boron,” Science 359, 896–900 (2018).10.1126/science.aaq1684
    [17]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [18]
    Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
    [19]
    H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang et al., “CALYPSO structure prediction method and its wide application,” Comput. Mater. Sci. 112, 406–415 (2016).10.1016/j.commatsci.2015.09.037
    [20]
    B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang et al., “Interface structure prediction via CALYPSO method,” Sci. Bull. 64, 301–309 (2019).10.1016/j.scib.2019.02.009
    [21]
    G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/PhysRevB.54.11169
    [22]
    G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).10.1016/0927-0256(96)00008-0
    [23]
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
    [24]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
    [25]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [26]
    W. Yi, G. Tang, X. Chen, B. Yang, and X. Liu, “qvasp: A flexible toolkit for VASP users in materials simulations,” Comput. Phys. Commun. 257, 107535 (2020).10.1016/j.cpc.2020.107535
    [27]
    T. Bučko, J. Hafner, S. Lebègue, and J. G. Ángyán, “Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections,” J. Phys. Chem. A 114, 11814–11824 (2010).10.1021/jp106469x
    [28]
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118, 8207–8215 (2003).10.1063/1.1564060
    [29]
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: ‘Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)],’” J. Chem. Phys. 124, 219906 (2006).10.1063/1.2204597
    [30]
    L. Chaput, A. Togo, I. Tanaka, and G. Hug, “Phonon–phonon interactions in transition metals,” Phys. Rev. B 84, 094302 (2011).10.1103/physrevb.84.094302
    [31]
    R. Iftimie, P. Minary, and M. E. Tuckerman, “Ab initio molecular dynamics: Concepts, recent developments, and future trends,” Proc. Natl. Acad. Sci. U. S. A 102, 6654–6659 (2005).10.1073/pnas.0500193102
    [32]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
    [33]
    S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids,” J. Comput. Chem. 34, 2557–2567 (2013).10.1002/jcc.23424
    [34]
    K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao et al., “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205–10211 (2019).10.1021/acs.jpcc.8b12527
    [35]
    M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
    [36]
    D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/physrevlett.122.066001
    [37]
    C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou et al., “Nitrogen in black phosphorus structure,” Sci. Adv. 6, eaba9206 (2020).10.1126/sciadv.aba9206
    [38]
    M. Yu and D. R. Trinkle, “Accurate and efficient algorithm for bader charge integration,” J. Chem. Phys. 134, 064111 (2011).10.1063/1.3553716
    [39]
    C. Shang, X.-J. Zhang, and Z.-P. Liu, “Stochastic surface walking method for crystal structure and phase transition pathway prediction,” Phys. Chem. Chem. Phys. 16, 17845–17856 (2014).10.1039/c4cp01485e
    [40]
    C. Shang and Z.-P. Liu, “Stochastic surface walking method for structure prediction and pathway searching,” J. Chem. Theor. Comput. 9, 1838–1845 (2013).10.1021/ct301010b
    [41]
    S. Liu, L. Zhao, M. Yao, M. Miao, and B. Liu, “Novel all-nitrogen molecular crystals of aromatic N10,” Adv. Sci. 7, 1902320 (2020).10.1002/advs.201902320
    [42]
    L. Zhao, S. Liu, Y. Chen, W. Yi, D. Khodagholian et al., “A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material,” Dalton Trans. 51, 9369–9376 (2022).10.1039/d2dt00820c
    [43]
    S. Lin, M. Xu, Y. Liang, X. Yuan, Y. Zhang et al., “Ambient-pressure recoverable polynitrogen solids assembled by pentazolate rings with high energy density,” Inorg. Chem. 61, 15532–15539 (2022).10.1021/acs.inorgchem.2c02240
    [44]
    H. Östmark, S. Wallin, T. Brinck, P. Carlqvist, R. Claridge et al., “Detection of pentazolate anion (cyclo-N5−) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole,” Chem. Phys. Lett. 379, 539–546 (2003).10.1016/j.cplett.2003.08.081
    [45]
    M. Barysz and A. J. Sadlej, “Two-component methods of relativistic quantum chemistry: From the Douglas–Kroll approximation to the exact two-component formalism,” J. Mol. Struct.: THEOCHEM 573, 181–200 (2001).10.1016/s0166-1280(01)00542-5
    [46]
    M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin et al., “High-pressure synthesis of dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
    [47]
    Z. Zhao, R. Liu, L. Guo, S. Liu, M. Sui et al., “High-pressure synthesis and stability enhancement of lithium pentazolate,” Inorg. Chem. 61, 9012–9018 (2022).10.1021/acs.inorgchem.2c00112
    [48]
    M. Sui, S. Liu, P. Wang, N. Zou, Q. Dong et al., “High-pressure synthesis of fully sp2-hybridized polymeric nitrogen layer in potassium supernitride,” Sci. Bull. 68, 1505–1513 (2023).10.1016/j.scib.2023.06.029
    [49]
    M. J. Kamlet and C. Dickinson, “Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman–Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys. 48, 43–50 (1968).10.1063/1.1667939
    [50]
    J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103 (2017).10.1103/physrevb.95.020103
    [51]
    K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort, and H. Lang, “The exciting chemistry of tetraazidomethane,” Angew. Chem., Int. Ed. 46, 1168–1171 (2007).10.1002/anie.200603960
    [52]
    H. Gao, Q. Zhang, and J. M. Shreeve, “Fused heterocycle-based energetic materials (2012–2019),” J. Mater. Chem. A 8, 4193–4216 (2020).10.1039/c9ta12704f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return