| Citation: | Zhang Guanghui, Yi Wencai, Cao Yiqing, Zhang Shengli, Liu Xiaobing. Activation of N≡N bonds by CN4 tetrahedron leading to energetic carbon polynitrides under high pressure[J]. Matter and Radiation at Extremes, 2025, 10(5): 057801. doi: 10.1063/5.0282879 |
| [1] |
K. O. Christe, “Polynitrogen chemistry enters the ring,” Science 355, 351 (2017).10.1126/science.aal5057
|
| [2] |
Q. Lin, P. Wang, Y. Xu, and M. Lu, “Pentazolate anion cyclo-N5−: Development of a new energetic material,” Engineering 6, 964–966 (2020).10.1016/j.eng.2020.04.011
|
| [3] |
S. Li, Y. Wang, C. Qi, X. Zhao, J. Zhang et al., “3D energetic metal–organic frameworks: Synthesis and properties of high energy materials,” Angew. Chem., Int. Ed. 52, 14031–14035 (2013).10.1002/anie.201307118
|
| [4] |
D. R. Miller, D. C. Swenson, and E. G. Gillan, “Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides,” J. Am. Chem. Soc. 126, 5372–5373 (2004).10.1021/ja048939y
|
| [5] |
M. Benz, T. M. Klapötke, J. Stierstorfer, and M. Voggenreiter, “Synthesis and characterization of binary, highly endothermic, and extremely sensitive 2,2′-azobis(5-azidotetrazole),” J. Am. Chem. Soc. 144, 6143–6147 (2022).10.1021/jacs.2c00995
|
| [6] |
T. M. Klapötke, F. A. Martin, and J. Stierstorfer, “C2N14: An energetic and highly sensitive binary azidotetrazole,” Angew. Chem., Int. Ed. 50, 4227–4229 (2011).10.1002/anie.201100300
|
| [7] |
M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, and R. Gilardi, “Polyazido high-nitrogen compounds: Hydrazo- and azo-1,3,5-triazine,” Angew. Chem., Int. Ed. 43, 4924–4928 (2004).10.1002/anie.200460366
|
| [8] |
C. Qi, S.-H. Li, Y.-C. Li, Y. Wang, X.-X. Zhao et al., “Synthesis and promising properties of a new family of high-nitrogen compounds: Polyazido- and polyamino-substituted N,N′-azo-1,2,4-triazoles,” Chem. - Eur. J. 18, 16562–16570 (2012).10.1002/chem.201202428
|
| [9] |
F. Lu, E. Wang, J. Huang, M. Huang, F. Nie et al., “The synthesis, property and reduction of high-nitrogen compound 3,3′,5,5′-tetraazido-4,4′-bis(1,2,4-triazole),” Polyhedron 117, 445–452 (2016).10.1016/j.poly.2016.06.025
|
| [10] |
D. Laniel, F. Trybel, A. Aslandukov, S. Khandarkhaeva, T. Fedotenko et al., “Synthesis of ultra-incompressible and recoverable carbon nitrides featuring CN4 tetrahedra,” Adv. Mater. 36, 2308030 (2024).10.1002/adma.202308030
|
| [11] |
F. Peng, Y. Yao, H. Liu, and Y. Ma, “Crystalline LiN5 predicted from first-principles as a possible high-energy material,” J. Phys. Chem. Lett. 6, 2363–2366 (2015).10.1021/acs.jpclett.5b00995
|
| [12] |
W. Yi, X. Jiang, T. Yang, B. Yang, Z. Liu et al., “Crystalline structures and energetic properties of lithium pentazolate under ambient conditions,” ACS Omega 5, 24946–24953 (2020).10.1021/acsomega.0c03835
|
| [13] |
C. Choi, H.-W. Yoo, E. M. Goh, S. G. Cho, and Y. Jung, “Ti(N5)4 as a potential nitrogen-rich stable high-energy density material,” J. Phys. Chem. A 120, 4249–4255 (2016).10.1021/acs.jpca.6b04226
|
| [14] |
S. Lin, J. Chen, B. Zhang, J. Hao, M. Xu et al., “Lanthanium nitride LaN9 featuring azide units: The first metal nine-nitride as a high-energy-density material,” Phys. Chem. Chem. Phys. 26, 3605–3613 (2024).10.1039/d3cp06155h
|
| [15] |
S. Lin, M. Xu, J. Hao, and Y. Li, “Pressure stabilized polymeric nitrogen in N2F and N10F compounds,” Results Phys. 43, 106093 (2022).10.1016/j.rinp.2022.106093
|
| [16] |
M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher et al., “Nitrogen fixation and reduction at boron,” Science 359, 896–900 (2018).10.1126/science.aaq1684
|
| [17] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
|
| [18] |
Y. Wang, J. Lv, L. Zhu, and Y. Ma, “CALYPSO: A method for crystal structure prediction,” Comput. Phys. Commun. 183, 2063–2070 (2012).10.1016/j.cpc.2012.05.008
|
| [19] |
H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang et al., “CALYPSO structure prediction method and its wide application,” Comput. Mater. Sci. 112, 406–415 (2016).10.1016/j.commatsci.2015.09.037
|
| [20] |
B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang et al., “Interface structure prediction via CALYPSO method,” Sci. Bull. 64, 301–309 (2019).10.1016/j.scib.2019.02.009
|
| [21] |
G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).10.1103/PhysRevB.54.11169
|
| [22] |
G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).10.1016/0927-0256(96)00008-0
|
| [23] |
H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).10.1103/physrevb.13.5188
|
| [24] |
G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
|
| [25] |
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
|
| [26] |
W. Yi, G. Tang, X. Chen, B. Yang, and X. Liu, “qvasp: A flexible toolkit for VASP users in materials simulations,” Comput. Phys. Commun. 257, 107535 (2020).10.1016/j.cpc.2020.107535
|
| [27] |
T. Bučko, J. Hafner, S. Lebègue, and J. G. Ángyán, “Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections,” J. Phys. Chem. A 114, 11814–11824 (2010).10.1021/jp106469x
|
| [28] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys. 118, 8207–8215 (2003).10.1063/1.1564060
|
| [29] |
J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Erratum: ‘Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)],’” J. Chem. Phys. 124, 219906 (2006).10.1063/1.2204597
|
| [30] |
L. Chaput, A. Togo, I. Tanaka, and G. Hug, “Phonon–phonon interactions in transition metals,” Phys. Rev. B 84, 094302 (2011).10.1103/physrevb.84.094302
|
| [31] |
R. Iftimie, P. Minary, and M. E. Tuckerman, “Ab initio molecular dynamics: Concepts, recent developments, and future trends,” Proc. Natl. Acad. Sci. U. S. A 102, 6654–6659 (2005).10.1073/pnas.0500193102
|
| [32] |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “LOBSTER: A tool to extract chemical bonding from plane-wave based DFT,” J. Comput. Chem. 37, 1030–1035 (2016).10.1002/jcc.24300
|
| [33] |
S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids,” J. Comput. Chem. 34, 2557–2567 (2013).10.1002/jcc.23424
|
| [34] |
K. Xia, X. Zheng, J. Yuan, C. Liu, H. Gao et al., “Pressure-stabilized high-energy-density alkaline-earth-metal pentazolate salts,” J. Phys. Chem. C 123, 10205–10211 (2019).10.1021/acs.jpcc.8b12527
|
| [35] |
M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nat. Mater. 3, 558–563 (2004).10.1038/nmat1146
|
| [36] |
D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, “Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa,” Phys. Rev. Lett. 122, 066001 (2019).10.1103/physrevlett.122.066001
|
| [37] |
C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou et al., “Nitrogen in black phosphorus structure,” Sci. Adv. 6, eaba9206 (2020).10.1126/sciadv.aba9206
|
| [38] |
M. Yu and D. R. Trinkle, “Accurate and efficient algorithm for bader charge integration,” J. Chem. Phys. 134, 064111 (2011).10.1063/1.3553716
|
| [39] |
C. Shang, X.-J. Zhang, and Z.-P. Liu, “Stochastic surface walking method for crystal structure and phase transition pathway prediction,” Phys. Chem. Chem. Phys. 16, 17845–17856 (2014).10.1039/c4cp01485e
|
| [40] |
C. Shang and Z.-P. Liu, “Stochastic surface walking method for structure prediction and pathway searching,” J. Chem. Theor. Comput. 9, 1838–1845 (2013).10.1021/ct301010b
|
| [41] |
S. Liu, L. Zhao, M. Yao, M. Miao, and B. Liu, “Novel all-nitrogen molecular crystals of aromatic N10,” Adv. Sci. 7, 1902320 (2020).10.1002/advs.201902320
|
| [42] |
L. Zhao, S. Liu, Y. Chen, W. Yi, D. Khodagholian et al., “A novel all-nitrogen molecular crystal N16 as a promising high-energy-density material,” Dalton Trans. 51, 9369–9376 (2022).10.1039/d2dt00820c
|
| [43] |
S. Lin, M. Xu, Y. Liang, X. Yuan, Y. Zhang et al., “Ambient-pressure recoverable polynitrogen solids assembled by pentazolate rings with high energy density,” Inorg. Chem. 61, 15532–15539 (2022).10.1021/acs.inorgchem.2c02240
|
| [44] |
H. Östmark, S. Wallin, T. Brinck, P. Carlqvist, R. Claridge et al., “Detection of pentazolate anion (cyclo-N5−) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole,” Chem. Phys. Lett. 379, 539–546 (2003).10.1016/j.cplett.2003.08.081
|
| [45] |
M. Barysz and A. J. Sadlej, “Two-component methods of relativistic quantum chemistry: From the Douglas–Kroll approximation to the exact two-component formalism,” J. Mol. Struct.: THEOCHEM 573, 181–200 (2001).10.1016/s0166-1280(01)00542-5
|
| [46] |
M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin et al., “High-pressure synthesis of dirac materials: Layered van der Waals bonded BeN4 polymorph,” Phys. Rev. Lett. 126, 175501 (2021).10.1103/physrevlett.126.175501
|
| [47] |
Z. Zhao, R. Liu, L. Guo, S. Liu, M. Sui et al., “High-pressure synthesis and stability enhancement of lithium pentazolate,” Inorg. Chem. 61, 9012–9018 (2022).10.1021/acs.inorgchem.2c00112
|
| [48] |
M. Sui, S. Liu, P. Wang, N. Zou, Q. Dong et al., “High-pressure synthesis of fully sp2-hybridized polymeric nitrogen layer in potassium supernitride,” Sci. Bull. 68, 1505–1513 (2023).10.1016/j.scib.2023.06.029
|
| [49] |
M. J. Kamlet and C. Dickinson, “Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman–Jouguet detonation pressures on the basis of available experimental information,” J. Chem. Phys. 48, 43–50 (1968).10.1063/1.1667939
|
| [50] |
J. Zhang, A. R. Oganov, X. Li, and H. Niu, “Pressure-stabilized hafnium nitrides and their properties,” Phys. Rev. B 95, 020103 (2017).10.1103/physrevb.95.020103
|
| [51] |
K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort, and H. Lang, “The exciting chemistry of tetraazidomethane,” Angew. Chem., Int. Ed. 46, 1168–1171 (2007).10.1002/anie.200603960
|
| [52] |
H. Gao, Q. Zhang, and J. M. Shreeve, “Fused heterocycle-based energetic materials (2012–2019),” J. Mater. Chem. A 8, 4193–4216 (2020).10.1039/c9ta12704f
|