| Citation: | He Qi-Guang, Wu Dun, Yu Yuying, Zhang Hang, Wu Qiang, Hu Jianbo. Generation of spherically converging shock wave based on shock wave lens[J]. Matter and Radiation at Extremes, 2025, 10(6): 067602. doi: 10.1063/5.0281313 |
| [1] |
M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 2022–2025 (1993).10.1103/physrevlett.71.2022
|
| [2] |
J. H. Oh, H. M. Seung, and Y. Y. Kim, “Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization,” J. Sound Vib. 410, 169–186 (2017).10.1016/j.jsv.2017.08.027
|
| [3] |
A. S. Gliozzi, M. Miniaci, F. Bosia, N. M. Pugno, and M. Scalerandi, “Metamaterials-based sensor to detect and locate nonlinear elastic sources,” Appl. Phys. Lett. 107, 161902 (2015).10.1063/1.4934493
|
| [4] |
Y. Tian, Y. Shen, D. Rao, and W. Xu, “Metamaterial improved nonlinear ultrasonics for fatigue damage detection,” Smart Mater. Struct. 28, 075038 (2019).10.1088/1361-665x/ab2566
|
| [5] |
Q. Wu, H. Chen, H. Nassar, and G. Huang, “Non-reciprocal Rayleigh wave propagation in space–time modulated surface,” J. Mech. Phys. Solids 146, 104196 (2021).10.1016/j.jmps.2020.104196
|
| [6] |
Q. Lin, J. Zhou, H. pan, D. Xu, and G. Wen, “Numerical and experimental investigations on tunable low-frequency locally resonant metamaterials,” Acta Mech. Solida Sin. 34, 612–623 (2021).10.1007/s10338-021-00220-4
|
| [7] |
E. D. Nobrega, F. Gautier, A. Pelat, and J. M. C. Dos Santos, “Vibration band gaps for elastic metamaterial rods using wave finite element method,” Mech. Syst. Signal Process. 79, 192–202 (2016).10.1016/j.ymssp.2016.02.059
|
| [8] |
H. J. Lee, J. K. Lee, and Y. Y. Kim, “Elastic metamaterial-based impedance-varying phononic bandgap structures for bandpass filters,” J. Sound Vib. 353, 58–74 (2015).10.1016/j.jsv.2015.05.012
|
| [9] |
B. Assouar, B. Liang, Y. Wu, Y. Li, J. C. Cheng et al., “Acoustic metasurfaces,” Nat. Rev. Mater. 3, 460–472 (2018).10.1038/s41578-018-0061-4
|
| [10] |
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang et al., “Locally resonant sonic materials,” Science 289, 1734–1736 (2000).10.1126/science.289.5485.1734
|
| [11] |
S. Ning, F. Yang, C. Luo, Z. Liu, and Z. Zhuang, “Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation,” Extreme Mech. Lett. 35, 100623 (2020).10.1016/j.eml.2019.100623
|
| [12] |
K. Li, P. Rizzo, and A. Bagheri, “A parametric study on the optimization of a metamaterial-based energy harvester,” Smart Mater. Struct. 24, 115019 (2015).10.1088/0964-1726/24/11/115019
|
| [13] |
A. Sukhovich, L. Jing, and J. H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B 77, 014301 (2008).10.1103/physrevb.77.014301
|
| [14] |
R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5, 5510 (2014).10.1038/ncomms6510
|
| [15] |
L. Cao, Y. Xu, B. Assouar, and Z. Yang, “Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces,” Appl. Phys. Lett. 113, 183506 (2018).10.1063/1.5050671
|
| [16] |
S. Li, J. Xu, and J. Tang, “Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces,” Appl. Phys. Lett. 112, 021903 (2018).10.1063/1.5011675
|
| [17] |
Z. Li, X. Wang, Y. Hou, Y. Yu, G. Li et al., “Quantifying the partial ionization effect of gold in the transition region between condensed matter and warm dense matter,” Proc. Natl. Acad. Sci. 120, e2300066120 (2023).10.1073/pnas.2300066120
|
| [18] |
Z. Jiao, Z. Li, F. Wu, Q. Wang, X. Li et al., “Phase transition, twinning, and spall damage of NiTi shape memory alloys under shock loading,” Mater. Sci. Eng. A 869, 144775 (2023).10.1016/j.msea.2023.144775
|
| [19] |
Y. Wang, Q. Hou, X. Li, Z. Li, F. Wu et al., “Strain rate-dependent tensile response and deformation mechanism of laser powder bed fusion 316L stainless steel,” Mater. Sci. Eng.: A 893, 146124 (2024).10.1016/j.msea.2024.146124
|
| [20] |
H. He, Y. Li, Y. Liu, D. Shi, and H. Fan, “Vibration suppression and impact mitigation of locally resonant composite metamaterial columns,” Compos. Struct. 307, 116631 (2023).10.1016/j.compstruct.2022.116631
|
| [21] |
S. Gopalakrishnan and Y. Rajapakse, Blast Mitigation Strategies in Marine Composite and Sandwich Structures (Springer Singapore, 2018), pp. 357–375.
|
| [22] |
T. Li, X. Jin, Y. Li, and P. Yang, “Optimization of band gap of 1D elastic metamaterial under impact load by regulating stiffness,” Acta Mech. Solida Sin. 37, 148–154 (2024).10.1007/s10338-023-00451-7
|
| [23] |
X. R. Li, Z. G. Wang, G. H. Wang, and Y. W. Ma, “Bandgap calculation of shock-resistant metamaterials and evaluation of shockwave resistance,” J. Phys. Conf. Ser. 1507, 032009 (2020).10.1088/1742-6596/1507/3/032009
|
| [24] |
J. N. Fritz, A Simple Plane-Wave Explosive Lens (Los Alamos National Lab, 2000).
|
| [25] |
J. P. Lichthardt, B. C. Tappan, P. R. Bowden, M. W. Olinger, and D. L. McDonald, “A simple 3D printed plane wave explosive lens based on fritz parameters,” AIP Conf. Proc. 2272, 030018 (2020).10.1063/12.0000892
|
| [26] |
J. Loiseau, J. Huneault, O. E. Petel, S. Goroshin, D. L. Frost et al., “Development of multi-component explosive lenses for arbitrary phase velocity generation,” J. Phys. Conf. Ser. 500, 192010 (2014).10.1088/1742-6596/500/19/192010
|
| [27] |
J. L. Brown and G. Ravichandran, “Analysis of oblique shock waves in solids using shock polars,” Shock Waves 24, 403–413 (2014).10.1007/s00193-013-0484-1
|
| [28] |
E. Loomis and D. Swift, “Oblique shock waves incident on an interface between two materials for general equations of state,” J. Appl. Phys. 103, 023518 (2008).10.1063/1.2837045
|
| [29] |
D. J. Steinberg, S. G. Cochran, and M. W. Guinan, “A constitutive model for metals applicable at high-strain rate,” J. Appl. Phys. 51, 1498–1504 (1980).10.1063/1.327799
|
| [30] |
D. J. Steinberg and C. M. Lund, “A constitutive model for strain rates from 10−4 to 106 s−1,” J. Appl. Phys. 65, 1528–1533 (1989).10.1063/1.342968
|
| [31] |
S. Hai-Feng, L. Hai-Feng, Z. Guang-Cai, and Z. Yan-Hong, “Numerical simulation of wave propagation and phase transition of tin under shock-wave loading,” Chin. Phys. Lett. 26, 066401 (2009).10.1088/0256-307x/26/6/066401
|
| [32] |
J. T. Ma, Q. G. He, and X. W. Chen, “The simultaneous macroscopic and mesoscopic numerical simulation of metal spalling by using the fine-mesh finite element—smoothed particle hydrodynamics adaptive method,” Shock Waves 34, 569–589 (2024).10.1007/s00193-024-01195-0
|