| Citation: | Xiong W., Yang X. H., Chen Z. H., Xu B. H., Li Z., Zeng B., Dong Y. L., Zhang G. B., Ma Y. Y.. Evolution of the rippled inner-interface-initiated ablative Rayleigh–Taylor instability in laser-ablating high-Z doped targets[J]. Matter and Radiation at Extremes, 2025, 10(6): 067601. doi: 10.1063/5.0279590 |
| [1] |
L. Ceurvorst, R. Betti, V. Gopalaswamy, A. Lees, J. P. Knauer et al., “Progress toward hydro-equivalent ignition in OMEGA direct-drive DT-layered implosions,” Phys. Plasmas 32, 032711 (2025).10.1063/5.0238716
|
| [2] |
V. Gopalaswamy, C. A. Williams, R. Betti, D. Patel, J. P. Knauer et al., “Demonstration of a hydrodynamically equivalent burning plasma in direct-drive inertial confinement fusion,” Nat. Phys. 20, 751 (2024).10.1038/s41567-023-02361-4
|
| [3] |
C. A. Williams, R. Betti, V. Gopalaswamy, J. P. Knauer, C. J. Forrest et al., “Demonstration of hot-spot fuel gain exceeding unity in direct-drive inertial confinement fusion implosions,” Nat. Phys. 20, 758 (2024).10.1038/s41567-023-02363-2
|
| [4] |
M. Martin, C. Gauvin, A. Choux, P. Baclet, and G. Pascal, “The cryogenic target for ignition on the LMJ: Useful tools to achieve nominal temperature and roughness conditions of the DT solid layer,” Fusion Sci. Technol. 49, 600 (2006).10.13182/fst49-600
|
| [5] |
B. J. Kozioziemski, E. R. Mapoles, J. D. Sater, A. A. Chernov, J. Moody et al., “Deuterium-tritium fuel layer formation for the National Ignition Facility,” Fusion Sci. Technol. 59, 14 (2011).10.13182/fst10-3697.
|
| [6] |
Z. Li, Z. Q. Zhao, X. H. Yang, G. B. Zhang, Y. Y. Ma et al., “Hybrid optimization of laser-driven fusion targets and laser profiles,” Plasma Phys. Control. Fusion 66, 015010 (2024).10.1088/1361-6587/ad0e21
|
| [7] |
Y. Cui, X. H. Yang, Y. Y. Ma, G. B. Zhang, B. H. Xu et al., “The importance of Righi–Leduc heat flux to the ablative Rayleigh–Taylor instability during a laser irradiating targets,” High Power Laser Sci. Eng. 12, e24 (2024).10.1017/hpl.2024.3
|
| [8] |
J. K. Hoffer and L. R. Foreman, “Radioactively induced sublimation in solid tritium,” Phys. Rev. Lett. 60, 1310 (1988).10.1103/physrevlett.60.1310
|
| [9] |
D. R. Harding and W. T. Shmayda, “Stress-and radiation-induced swelling in plastic capsules,” Fusion Sci. Technol. 63, 125 (2013).10.13182/fst13-a16329
|
| [10] |
W. T. Shmayda, D. R. Harding, V. A. Versteeg, C. Kingsley, M. Hallgren et al., “Micron-scaled defects on cryogenic targets: An assessment of condensate sources,” Fusion Sci. Technol. 63, 87 (2013).10.13182/fst13-a16325
|
| [11] |
R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
|
| [12] |
Y. Y. Lei, F. Y. Wu, R. Ramis, and J. Zhang, “Comparison of the evolution of Rayleigh–Taylor instability during the coasting phase of the central ignition and the double-cone ignition schemes,” Phys. Plasmas 31, 012108 (2024).10.1063/5.0171022
|
| [13] |
L. F. Wang, W. H. Ye, X. T. He, W. Y. Zhang, Z. M. Sheng et al., “Formation of jet-like spikes from the ablative Rayleigh–Taylor instability,” Phys. Plasmas 19, 100701 (2012).10.1063/1.4759161
|
| [14] |
M. J. Schmitt, P. A. Bradley, J. A. Cobble, J. R. Fincke, P. Hakel et al., “Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility,” Phys. Plasmas 20, 056310 (2013).10.1063/1.4803886
|
| [15] |
M. J. Schmitt, P. A. Bradley, J. A. Cobble, S. C. Hsu, N. S. Krasheninnikova et al., “Defect-induced mix experiment for NIF,” EPJ Web Conf. 59, 04005 (2013).10.1051/epjconf/20135904005
|
| [16] |
I. V. Igumenshchev, V. N. Goncharov, W. T. Shmayda, D. R. Harding, T. C. Sangster et al., “Effects of local defect growth in direct-drive cryogenic implosions on OMEGA,” Phys. Plasmas 20, 082703 (2013).10.1063/1.4818280
|
| [17] |
B. M. Haines, R. E. Olson, W. Sweet, S. A. Yi, A. B. Zylstra et al., “Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions,” Phys. Plasmas 26, 012707 (2019).10.1063/1.5080262
|
| [18] |
B. M. Haines, J. P. Sauppe, B. J. Albright, W. S. Daughton, S. M. Finnegan et al., “A mechanism for reduced compression in indirectly driven layered capsule implosions,” Phys. Plasmas 29, 042704 (2022).10.1063/5.0083299
|
| [19] |
P. A. Bradley, J. A. Cobble, I. L. Tregillis, M. J. Schmitt, K. D. Obrey et al., “Role of shocks and mix caused by capsule defects,” Phys. Plasmas 19, 092703 (2012).10.1063/1.4752014
|
| [20] |
Y. X. Liu, Z. Chen, L. F. Wang, Z. Y. Li, J. F. Wu et al., “Dynamic of shock–bubble interactions and nonlinear evolution of ablative hydrodynamic instabilities initialed by capsule interior isolated defects,” Phys. Plasmas 30, 042302 (2023).10.1063/5.0137856
|
| [21] |
D. R. Harding, D. D. Meyerhofer, S. J. Loucks, L. D. Lund, R. Janezic et al., “Forming cryogenic targets for direct-drive experiments,” Phys. Plasmas 13, 056316 (2006).10.1063/1.2192468
|
| [22] |
A. L. Velikovich, A. J. Schmitt, C. Zulick, Y. Aglitskiy, M. Karasik et al., “Multi-mode hydrodynamic evolution of perturbations seeded by isolated surface defects,” Phys. Plasmas 27, 102706 (2020).10.1063/5.0020367
|
| [23] |
O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan et al., “Physics principles of inertial confinement fusion and U.S. program overview,” Rev. Mod. Phys. 95, 025005 (2023).10.1103/RevModPhys.95.025005.
|
| [24] |
R. Betti, V. Lobatchev, and R. L. McCrory, “Feedout and Rayleigh–Taylor seeding induced by long wavelength perturbations in accelerated planar foils,” Phys. Rev. Lett. 81, 5560 (1998).10.1103/physrevlett.81.5560
|
| [25] |
A. L. Velikovich, A. J. Schmitt, J. H. Gardner, and N. Metzler, “Feedout and Richtmyer–Meshkov instability at large density difference,” Phys. Plasmas 8, 592 (2001).10.1063/1.1335829
|
| [26] |
A. Velikovich and L. Phillips, “Instability of a plane centered rarefaction wave,” Phys. Fluids 8, 1107 (1996).10.1063/1.868889
|
| [27] |
A. L. Velikovich, S. T. Zalesak, N. Metzler, and J. G. Wouchuk, “Instability of a planar expansion wave,” Phys. Rev. E 72, 046306 (2005).10.1103/physreve.72.046306
|
| [28] |
Y. Aglitskiy, M. Karasik, A. L. Velikovich, V. Serlin, J. L. Weaver et al., “Observed transition from Richtmyer–Meshkov jet formation through feedout oscillations to Rayleigh–Taylor instability in a laser target,” Phys. Plasmas 19, 102707 (2012).10.1063/1.4764287
|
| [29] |
K. Shigemori, M. Nakai, H. Azechi, K. Nishihara, R. Ishizaki et al., “Feed-out of rear surface perturbation due to rarefaction wave in laser-irradiated targets,” Phys. Rev. Lett. 84, 5331 (2000).10.1103/physrevlett.84.5331
|
| [30] |
J. Grun, M. H. Emery, S. Kacenjar, C. B. Opal, E. A. McLean et al., “Observation of the Rayleigh-Taylor instability in ablatively accelerated foils,” Phys. Rev. Lett. 53, 1352 (1984).10.1103/physrevlett.53.1352
|
| [31] |
Y. Aglitskiy, A. L. Velikovich, M. Karasik, V. Serlin, C. J. Pawley et al., “Direct observation of feedout-related mass oscillations in plastic targets,” Phys. Rev. Lett. 87, 265002 (2001).10.1103/physrevlett.87.265002
|
| [32] |
Y. Aglitskiy, A. L. Velikovich, M. Karasik, N. Metzler, S. T. Zalesak et al., “Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions,” Philos. Trans. R. Soc., A 368, 1739 (2010).10.1098/rsta.2009.0131
|
| [33] |
K. O. Mikaelian, “Growth rate of the Richtmyer–Meshkov instability at shocked interfaces,” Phys. Rev. Lett. 71, 2903 (1993).10.1103/physrevlett.71.2903
|
| [34] |
S. C. Miller and V. N. Goncharov, “Instability seeding mechanisms due to internal defects in inertial confinement fusion targets,” Phys. Plasmas 29, 082701 (2022).10.1063/5.0091949
|
| [35] |
S. Fujioka, A. Sunahara, K. Nishihara, N. Ohnishi, T. Johzaki et al., “Suppression of the Rayleigh–Taylor instability due to self-radiation in a multiablation target,” Phys. Rev. Lett. 92, 195001 (2004).10.1103/physrevlett.92.195001
|
| [36] |
S. Fujioka, A. Sunahara, N. Ohnishi, Y. Tamari, K. Nishihara et al., “Suppression of Rayleigh–Taylor instability due to radiative ablation in brominated plastic targets,” Phys. Plasmas 11, 2814 (2004).10.1063/1.1705654
|
| [37] |
Y. Y. Teng, W. L. Feng, T. S. Yong, W. J. Feng, C. Z. Rong et al., “Experimental investigation on the influence of the dopant ratio on ablative Rayleigh-Taylor instability growth,” Acta Phys. Sin. 63, 235203 (2024).10.7498/aps.63.235203
|
| [38] |
B. Xu, Y. Ma, X. Yang, W. Tang, Z. Ge et al., “Effect of bromine-dopant on radiation-driven Rayleigh–Taylor instability in plastic foil,” Plasma Phys. Control. Fusion 59, 105012 (2017).10.1088/1361-6587/aa80b6
|
| [39] |
B. Xu, Y. Ma, X. Yang, W. Tang, S. Wang et al., “Effect of high-Z dopant on the laser-driven ablative Richtmyer–Meshkov instability,” Laser Part. Beams 35, 366 (2017).10.1017/s0263034617000301
|
| [40] |
Y. Dai, H. Gu, K. Fang, Y. Zhang, C. Zhang et al., “Diagnosing the fast-heating process of the double-cone ignition scheme with x-ray spectroscopy,” High Power Laser Sci. Eng. 12, e50 (2024).10.1017/hpl.2024.32
|
| [41] |
H. Xu, X. H. Yang, J. Liu, and M. Borghesi, “Control of fast electron propagation in foam target by high-Z doping,” Plasma Phys. Control. Fusion 61, 025010 (2019).10.1088/1361-6587/aaefce
|
| [42] |
X. H. Yang, Z. H. Chen, H. Xu, Y. Y. Ma, G. B. Zhang et al., “Hybrid PIC—fluid Simulations for fast electron transport in a silicon target,” Matter Radiat. Extremes 8, 035901 (2023).10.1063/5.0137973
|
| [43] |
W. Q. Wang, J. J. Honrubia, Y. Yin, X. H. Yang, and F. Q. Shao, “Resistive field generation in intense proton beam interaction with solid targets,” Matter Radiat. Extremes 9, 015603 (2024).10.1063/5.0172035
|
| [44] |
G. Fiksel, S. X. Hu, V. A. Goncharov, D. D. Meyerhofer, T. C. Sangster et al., “Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets,” Phys. Plasmas 19, 062704 (2012).10.1063/1.4729732
|
| [45] |
C. Yañez, J. Sanz, M. Olazabal-Loumé, and L. F. Ibañez, “Modeling hydrodynamic instabilities of double ablation fronts in inertial confinement fusion,” EPJ Web Conf. 59, 04008 (2013).10.1051/epjconf/20135904008
|
| [46] |
C. Yañez, J. Sanz, and M. Olazabal-Loumé, “Self-consistent numerical dispersion relation of the ablative Rayleigh–Taylor instability of double ablation fronts in inertial confinement fusion,” Phys. Plasmas 19, 062705 (2012).10.1063/1.4729725
|
| [47] |
C. Yañez, J. Sanz, M. Olazabal-Loumé, and L. F. Ibañez, “Linear stability analysis of double ablation fronts in direct-drive inertial confinement fusion,” Phys. Plasmas 18, 052701 (2011).10.1063/1.3575595
|
| [48] |
W. Xiong, X. Yang, G. Zhang, Z. Chen, Y. Cui et al., “The effect of high-Z dopant on the ablation of carbon–hydrogen polymer target,” Plasma Phys. Control. Fusion 66, 095002 (2024).10.1088/1361-6587/ad6264
|
| [49] |
Y. B. Zel’dovich, Y. P. Raizer, W. D. Hayes, and D. Probstein, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York and London, 1966).
|
| [50] |
V. N. Goncharov, “Theory of the ablative Richtmyer–Meshkov instability,” Phys. Rev. Lett. 82, 2091 (1999).10.1103/physrevlett.82.2091
|
| [51] |
V. N. Goncharov, O. V. Gotchev, E. Vianello, T. R. Boehly, J. P. Knauer et al., “Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,” Phys. Plasmas 13, 012702 (2006).10.1063/1.2162803
|
| [52] |
S. W. Wang and X. H. Yang, Inertial Confinement Fusion Theory and Numerical Calculation (Science Press, Beijing, 2024), p. 125 (in Chinese).
|
| [53] |
T. Tao, G. Zheng, Q. Jia, R. Yan, and J. Zheng, “Laser pulse shape designer for direct-drive inertial confinement fusion implosions,” High Power Laser Sci. Eng. 11, e41 (2023).10.1017/hpl.2023.35
|
| [54] |
S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, New York, 2004), p. 289.
|
| [55] |
M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluid. Plasma Phys. 2, 1007 (1990).10.1063/1.859274
|
| [56] |
V. N. Goncharov, R. Betti, R. L. McCrory, P. Sorotokin, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with large Froude numbers,” Phys. Plasmas 3, 1402 (1996).10.1063/1.871730
|
| [57] |
V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon, “Self-consistent stability analysis of ablation fronts with small Froude numbers,” Phys. Plasmas 3, 4665 (1996).10.1063/1.872078
|
| [58] |
Z. H. Chen, X. H. Yang, G. B. Zhang, Y. Y. Ma, R. Yan et al., “Role of nonlocal heat transport on the laser ablative Rayleigh–Taylor instability,” Nucl. Fusion 64, 126029 (2024).10.1088/1741-4326/ad7f6d
|
| [59] |
L. Wang, W. Ye, X. He, J. Wu, Z. Fan et al., “Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions,” Sci. China Phys., Mech. Astron. 60, 055201 (2017).10.1007/s11433-017-9016-x
|
| [60] |
Flash Center for Computational Science, FLASH User’s Guide (University of Rochester, 2023).
|
| [61] |
Z. Chen, Y. T. Yuan, L. F. Wang, S. Y. Tu, W. Y. Miao et al., “Early-time harmonic generation from a single-mode perturbation driven by x-ray ablation,” Phys. Rev. Lett. 133, 135101 (2024).10.1103/physrevlett.133.135101
|
| [62] |
W. M. Manheimer, D. G. Colombant, and J. H. Gardner, “Steady-state planar ablative flow,” Phys. Fluids 25, 1644 (1982).10.1063/1.863956
|
| [63] |
D. Book, NRL Plasma Formulary (NRL Plasma Physics Division, Washington DC, 2018).
|
| [64] |
B. Xu, X. Yang, Z. Li, B. Zeng, Z. Chen et al., “Effects of x-ray pre-ablation on the implosion process for double-cone ignition,” High Power Laser Sci. Eng. 13, e24 (2025).10.1017/hpl.2025.11
|