Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 5
Sep.  2025
Turn off MathJax
Article Contents
Zhang Chuanchao, Liao Wei, Jiang Xiaolong, Wang Haijun, Zeng Fa, Ni Wei, Li Ping, Jiang Xiaodong, Zhu Qihua. Spatially random polarization-smoothing optics by residual stress birefringence of fused silica for laser-driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(5): 057402. doi: 10.1063/5.0277045
Citation: Zhang Chuanchao, Liao Wei, Jiang Xiaolong, Wang Haijun, Zeng Fa, Ni Wei, Li Ping, Jiang Xiaodong, Zhu Qihua. Spatially random polarization-smoothing optics by residual stress birefringence of fused silica for laser-driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2025, 10(5): 057402. doi: 10.1063/5.0277045

Spatially random polarization-smoothing optics by residual stress birefringence of fused silica for laser-driven inertial confinement fusion

doi: 10.1063/5.0277045
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: qihzh@163.com
  • Received Date: 2025-04-22
  • Accepted Date: 2025-07-25
  • Available Online: 2025-11-28
  • Publish Date: 2025-09-01
  • We demonstrate a new polarization smoothing (PS) approach utilizing residual stress birefringence in fused silica to create a spatially random polarization control plate (SRPCP), thereby improving target illumination uniformity in inertial confinement fusion (ICF) laser systems. The fundamental operating mechanism and key fabrication techniques for the SRPCP are systematically developed and experimentally validated. The SRPCP converts a linearly polarized 3ω incident laser beam into an output beam with a spatially randomized polarization distribution. When combined with a continuous phase plate, the SRPCP effectively suppresses high-intensity speckles at all spatial frequencies in the focal spot. The proposed PS technique is specifically designed for high-fluence large-aperture laser systems, enabling novel polarization control regimes in laser-driven ICF.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    Chuanchao Zhang: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Wei Liao: Conceptualization (equal); Methodology (equal); Validation (equal); Writing – review & editing (supporting). Xiaolong Jiang: Methodology (equal); Validation (equal); Writing – review & editing (supporting). Haijun Wang: Investigation (supporting); Methodology (supporting); Validation (supporting). Fa Zeng: Data curation (supporting); Formal analysis (supporting); Investigation (supporting); Validation (supporting). Wei Ni: Funding acquisition (supporting); Methodology (supporting); Project administration (supporting); Resources (supporting). Ping Li: Funding acquisition (supporting); Methodology (supporting); Project administration (supporting); Resources (supporting). Xiaodong Jiang: Funding acquisition (supporting); Methodology (supporting); Project administration (supporting); Resources (supporting). Qihua Zhu: Conceptualization (lead); Formal analysis (lead); Funding acquisition (lead); Methodology (lead); Project administration (lead); Resources (lead); Supervision (lead); Validation (lead); Writing – review & editing (lead).
    The data that support the findings of this study are available from the corresponding authors upon reasonable request.
  • loading
  • [1]
    T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley et al., “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).10.1063/1.369702
    [2]
    R. L. Berger, E. Lefebvre, A. B. Langdon, J. E. Rothenberg, C. H. Still et al., “Stimulated Raman and Brillouin scattering of polarization-smoothed and temporally smoothed laser beams,” Phys. Plasmas 6, 1043–1047 (1999).10.1063/1.873713
    [3]
    C. Ruyer, P. Loiseau, G. Riazuelo, R. Riquier, A. Debayle et al., “Accounting for speckle-scale beam bending in classical ray tracing schemes for propagating realistic pulses in indirect drive ignition conditions,” Matter Radiat. Extremes 8, 025901 (2023).10.1063/5.0124360
    [4]
    H. H. Ma, X. F. Li, S. M. Weng, S. H. Yew, S. Kawata et al., “Mitigating parametric instabilities in plasmas by sunlight-like lasers,” Matter Radiat. Extremes 6, 055902 (2021).10.1063/5.0054653
    [5]
    L. Hao, J. Qiu, and W. Y. Huo, “Generation of high intensity speckles in overlapping laser beams,” Matter Radiat. Extremes 8, 025903 (2023).10.1063/5.0123585
    [6]
    J. Qiu, L. Hao, L. Cao, and S. Zou, “Collective stimulated Brillouin scattering modes of two crossing laser beams with shared scattered wave,” Matter Radiat. Extremes 6, 065903 (2021).10.1063/5.0062902
    [7]
    X. Jia, Q. Jia, R. Yan, and J. Zheng, “Suppressing stimulated Raman side-scattering with vector light,” Matter Radiat. Extremes 8, 055603 (2023).10.1063/5.0157811
    [8]
    J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol et al., “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).10.1103/physrevlett.86.2810
    [9]
    D. H. Froula, L. Divol, R. L. Berger, R. A. London, N. B. Meezan et al., “Direct measurements of an increased threshold for stimulated Brillouin scattering with polarization smoothing in ignition hohlraum plasmas,” Phys. Rev. Lett. 101, 115002 (2008).10.1103/physrevlett.101.115002
    [10]
    J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).10.1063/1.372395
    [11]
    K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno et al., “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).10.1016/0030-4018(92)90091-5
    [12]
    D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).10.1364/ao.43.006639
    [13]
    X. Huang, H. Jia, W. Zhou, F. Zhang, H. Guo et al., “Experimental demonstration of polarization smoothing in a convergent beam,” Appl. Opt. 54, 9786–9790 (2015).10.1364/ao.54.009786
    [14]
    B. Liu, X. Sun, H. Wang, Q. Yuan, M. Tian et al., “Polarization smoothing based on full poincaré beams modulated by stress-engineered optics,” Opt. Express 32, 11491–11508 (2024).10.1364/oe.517542
    [15]
    C. Zhang, Q. Chen, W. Liao, R. Dai, L. Zhang et al., “Analysis of residual stress fields from fictive temperature distributions within heat-affected zones of fused silica,” Opt. Express 29, 42511–42522 (2021).10.1364/oe.442031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return