| Citation: | Zhang Yutian, Niu Guoliang, Tan Pengfei, Zhu Chuanhui, Gou Huiyang, Walker David, Li Man-Rong. Screening of TiB2-based ternary composites for X-ray transparent heaters in high-pressure and high-temperature experiments[J]. Matter and Radiation at Extremes, 2025, 10(6): 067802. doi: 10.1063/5.0275504 |
| [1] |
X. Hou, Y. Shang, L. Chen, B. Feng, Y. Zhao et al., “Ultrahigh pressure generation at high temperatures in a Walker-type large-volume press and multiple applications,” Engineering 45, 155–164 (2025).10.1016/j.eng.2023.03.023
|
| [2] |
A. G. Sokol, Y. M. Borzdov, Y. N. Palyanov, and A. F. Khokhryakov, “High-temperature calibration of a multi-anvil high pressure apparatus,” High Pressure Res. 35, 139–147 (2015).10.1080/08957959.2015.1017819
|
| [3] |
A. Yamada, T. Irifune, H. Sumiya, Y. Higo, T. Inoue et al., “Exploratory study of the new B-doped diamond heater at high pressure and temperature and its application to in situ XRD experiments on hydrous Mg-silicate melt,” High Pressure Res. 28, 255–264 (2008).10.1080/08957950802261042
|
| [4] | |
| [5] |
D. Testemale, R. Argoud, O. Geaymond, and J.-L. Hazemann, “High pressure/high temperature cell for x-ray absorption and scattering techniques,” Rev. Sci. Instrum. 76, 043905 (2005).10.1063/1.1884188
|
| [6] | |
| [7] |
K. D. Liss, K. I. Funakoshi, R. Dippenaar, Y. Higo, A. Shiro et al., “Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics,” Metals 6, 165 (2016).10.3390/met6070165
|
| [8] |
M. E. Alabdulkarim, W. D. Maxwell, V. Thapliyal, and J. L. Maxwell, “A comprehensive review of high-pressure laser-induced materials processing, Part I: Laser-heated diamond anvil cells,” J. Manuf. Mater. Process. 6(5), 111 (2022).10.3390/jmmp6050111
|
| [9] |
B. Wei, L. Lin, J. Zhang, Z. Zhan, Z. Cheng et al., “In situ measurement techniques using diamond anvil cell at high pressure–temperature conditions: A review,” Phys. Status Solidi RRL 18, 2300469 (2024).10.1002/pssr.202300469
|
| [10] |
S. Wang, M. Berrada, K.-H. Chao, X. Lai, F. Zhu et al., “Externally heated diamond anvil cell experimentation (EH-DANCE) for studying materials and processes under extreme conditions,” Rev. Sci. Instrum. 94, 123902 (2023).10.1063/5.0180103
|
| [11] |
X. Lai, F. Zhu, J. S. Zhang, D. Zhang, S. Tkachev et al., “An externally-heated diamond anvil cell for synthesis and single-crystal elasticity determination of ice-VII at high pressure-temperature conditions,” J. Visualized Exp. 160, e61389 (2020).10.3791/61389
|
| [12] |
T. Irifune, T. Kunimoto, T. Shinmei, and Y. Tange, “High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils,” C. R. Géosci. 351, 260–268 (2018).10.1016/j.crte.2018.07.005
|
| [13] |
Y. Kanke, M. Akaishi, S. Yamaoka, and T. Taniguchi, “Heater cell for materials synthesis and crystal growth in the large volume high pressure apparatus at 10 GPa,” Rev. Sci. Instrum. 73, 3268–3270 (2002).10.1063/1.1499760
|
| [14] |
E. Ito and T. Katsura, “Melting of ferromagnesian silicates under the lower mantle conditions,” in High-Pressure Research: Application to Earth and Planetary Sciences, 67 (Advancing Earth and Space Science, 1992), pp. 315–322.
|
| [15] |
J. Zhang, R. C. Liebermann, T. Gasparik, C. T. Herzberg, and Y. Fei, “Melting and subsolidus relations of SiO2 at 9–14 GPa,” J. Geophys. Res.: Solid Earth 98, 19785–19793, (1993).10.1029/93jb02218
|
| [16] |
A. I. Borimsky, V. B. Volkov, and P. A. Nagorny, “High pressure cell heaters for diamond synthesis,” Process Technol. Proc. 12, 651–654 (1996).10.1016/s0921-8610(96)80111-7
|
| [17] |
D. Luo, L. Yang, H. Xie, S. Srinivasan, J. Tian et al., “Atomistic evidence of nucleation mechanism for the direct graphite-to-diamond transformation,” Carbon 229, 119538 (2024).10.1016/j.carbon.2024.119538
|
| [18] |
G. W. Chen, S.-C. Zhu, L. Xu, Y.-M. Li, Z.-P. Liu et al., “The transformation mechanism of graphite to hexagonal diamond under shock conditions,” JACS Au 4, 3413–3420 (2024).10.1021/jacsau.4c00523
|
| [19] |
M. A. Andrianov, V. L. Balkevich, and V. E. Sotnikov, “Use of lanthanum chromite for making electric heaters,” Refractories 21, 592–596 (1980).10.1007/bf01398327
|
| [20] |
T. Xia, Y. Han, C. Zhu, Z. Sun, C. Yuan et al., “Thermochemical mechanism of optimized lanthanum chromite heaters for high-pressure and high-temperature experiments,” ACS Appl. Mater. Interfaces 14, 32244–32252 (2022).10.1021/acsami.2c07639
|
| [21] |
A. Shatskiy, D. Yamazaki, G. Morard, T. Cooray, T. Matsuzaki et al., “Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments,” Rev. Sci. Instrum. 80, 023907 (2009).10.1063/1.3084209
|
| [22] |
F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. U. Mao et al., “The pressure-temperature phase and transformation diagram for carbon; updated through 1994,” Carbon 34, 141–153 (1996).10.1016/0008-6223(96)00170-4
|
| [23] |
H. Ozawa, S. Tateno, L. Xie, Y. Nakajima, N. Sakamoto et al., “Boron-doped diamond as a new heating element for internal-resistive heated diamond-anvil cell,” High Pressure Res. 38, 120–135 (2018).10.1080/08957959.2018.1441407
|
| [24] |
F. Xu, L. Xie, A. Yoneda, N. Guignot, A. King et al., “TiC-MgO composite: An x-ray transparent and machinable heating element in a multi-anvil high pressure apparatus,” High Pressure Res. 40, 257–266 (2020).10.1080/08957959.2020.1747452
|
| [25] |
L. Guan, M. Schwarz, R. Zhang, and E. Kroke, “Polymer-precursor-derived (am-) SiC/TiC composites for resistive heaters in large volume multi-anvil high pressure/high-temperature apparatus,” High Pressure Res. 36, 167–186 (2016).10.1080/08957959.2016.1164857
|
| [26] |
P. S. Sokolov, V. A. Mukhanov, T. Chauveau, and V. L. Solozhenko, “On melting of silicon carbide under pressure,” J. Superhard Mater. 34, 339–341 (2012).10.3103/s1063457612050097
|
| [27] |
M. Yoshida, A. Onodera, M. Ueno, K. Takemura, and O. Shimomura, “Pressure-induced phase transition in SiC,” Phys. Rev. B 48, 10587–10590 (1993).10.1103/physrevb.48.10587
|
| [28] |
G. Gradinaru, T. S. Sudarshan, S. A. Gradinaru, W. Mitchell, and H. M. Hobgood, “Electrical properties of high resistivity 6H–SiC under high temperature/high field stress,” Appl. Phys. Lett. 70, 735–737 (1997).10.1063/1.118264
|
| [29] |
F. W. Vahldiek, “Electrical resistivity, elastic modulus, and debye temperature of titanium diboride,” J. Less Common Met. 12, 202–209 (1967).10.1016/0022-5088(67)90115-4
|
| [30] |
B. Song, W. Yang, X. Liu, H. Chen, and M. Akhlaghi, “Microstructural characterization of TiB2–SiC–BN ceramics prepared by hot pressing,” Ceram. Int. 47, 29174–29182 (2021).10.1016/j.ceramint.2021.07.080
|
| [31] |
V. H. Nguyen, M. Shahedi Asl, Z. Hamidzadeh Mahaseni, M. Dashti Germi, S. A. Delbari et al., “Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method,” Ceram. Int. 46, 25341–25350 (2020).10.1016/j.ceramint.2020.07.001
|
| [32] |
X. Yang, J. Chen, R. Xing, and A. Babapoor, “Hot-pressing and characterization of TiB2–SiC composites with different amounts of BN additive,” Ceram. Int. 47, 16652–16660 (2021).10.1016/j.ceramint.2021.02.236
|
| [33] |
Y. Zhou, Z.-Y. Dong, W.-P. Hsieh, A. F. Goncharov, and X.-J. Chen, “Thermal conductivity of materials under pressure,” Nat. Rev. Phys. 4, 319–335 (2022).10.1038/s42254-022-00423-9
|
| [34] |
D. Walker, M. A. Carpenter, and C. M. Hitch, “Some simplifications to multianvil devices for high pressure experiments,” Am. Mineral. 75, 1020–1028 (1990).
|
| [35] |
D. Walker, “Lubrication, gasketing, and precision in multianvil experiments,” Am. Mineral. 76, 1092–1100 (1991).
|
| [36] |
D. Walker and J. Li, “Castable solid pressure media for multianvil devices,” Matter Radiat. Extremes 5, 018402 (2020).10.1063/1.5129534
|
| [37] |
L. Fang, G. Yang, G. Niu, R. He, J. Sun et al., “New single-toroidal sintered diamond anvil and assembly for high pressure neutron diffraction,” Nucl. Anal. 4, 100142 (2025).10.1016/j.nucana.2024.100142
|
| [38] |
W. Qide and T. Yuanfen, “Study on the oxidation mechanism and the resistance to oxidation of SiC materials,” Ceram. Sci. Art 1, 7–13 (2002) (in Chinese).
|
| [39] |
D. T. Cromer and D. A. Liberman, “Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge,” Acta Crystallogr., Sect. A 37, 267–268 (1981).10.1107/s0567739481000600
|