Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 6
Nov.  2025
Turn off MathJax
Article Contents
Zhang Yutian, Niu Guoliang, Tan Pengfei, Zhu Chuanhui, Gou Huiyang, Walker David, Li Man-Rong. Screening of TiB2-based ternary composites for X-ray transparent heaters in high-pressure and high-temperature experiments[J]. Matter and Radiation at Extremes, 2025, 10(6): 067802. doi: 10.1063/5.0275504
Citation: Zhang Yutian, Niu Guoliang, Tan Pengfei, Zhu Chuanhui, Gou Huiyang, Walker David, Li Man-Rong. Screening of TiB2-based ternary composites for X-ray transparent heaters in high-pressure and high-temperature experiments[J]. Matter and Radiation at Extremes, 2025, 10(6): 067802. doi: 10.1063/5.0275504

Screening of TiB2-based ternary composites for X-ray transparent heaters in high-pressure and high-temperature experiments

doi: 10.1063/5.0275504
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: dwalker@ldeo.columbia.edu and limanrong@hainanu.edu.cn
  • Received Date: 2025-04-13
  • Accepted Date: 2025-08-28
  • Available Online: 2025-11-28
  • Publish Date: 2025-11-01
  • High-pressure and high-temperature (HPHT) experiments in large-volume presses (LVPs) benefit from reliable, available, and affordable heaters to achieve stable and homogeneous heating and, in some circumstances, X-ray transparency for monitoring of properties of an in situ experiment using X-ray diffraction and contrast imaging techniques. We have developed heaters meeting the above requirements, and we screen the ternary system TiB2–SiC–hexagonal (h)BN (denoted as TSB) to enable manufacture of X-ray transparent heaters for HPHT runs. Heaters fabricated using optimized TSB-631 (60%TiB2–30%SiC–10%hBN by weight) have been tested in modified truncated assemblies, showing excellent performance up to 22 GPa and 2395 K in HPHT runs. TSB-631 has good ceramic machinability, outstanding reproducibility, high stability, and negligible temperature gradient for runs at 3–7 GPa with cell assemblies with truncated edge lengths of 8–12 mm. The fabricated heaters not only show excellent performance in HPHT runs, but also demonstrate high X-ray transparency over a wide X-ray wavelength region, indicating potential applications for in situ X-ray diffraction/imaging under HPHT conditions in LVPs and other high-pressure apparatus.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    Yutian Zhang: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (equal); Project administration (equal); Validation (lead); Writing – original draft (lead). Guoliang Niu: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). Pengfei Tan: Data curation (equal); Funding acquisition (equal); Investigation (equal); Writing – review & editing (equal). Chuanhui Zhu: Funding acquisition (equal); Writing – review & editing (equal). Huiyang Gou: Data curation (equal); Investigation (equal); Writing – review & editing (equal). David Walker: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Man-Rong Li: Conceptualization (lead); Data curation (equal); Funding acquisition (lead); Investigation (equal); Methodology (lead); Supervision (lead); Writing – original draft (equal); Writing – review & editing (lead).
    Author Contributions
    The data that support the findings of this study are available within the article and its supplementary material and from the corresponding authors upon reasonable request.
  • loading
  • [1]
    X. Hou, Y. Shang, L. Chen, B. Feng, Y. Zhao et al., “Ultrahigh pressure generation at high temperatures in a Walker-type large-volume press and multiple applications,” Engineering 45, 155–164 (2025).10.1016/j.eng.2023.03.023
    [2]
    A. G. Sokol, Y. M. Borzdov, Y. N. Palyanov, and A. F. Khokhryakov, “High-temperature calibration of a multi-anvil high pressure apparatus,” High Pressure Res. 35, 139–147 (2015).10.1080/08957959.2015.1017819
    [3]
    A. Yamada, T. Irifune, H. Sumiya, Y. Higo, T. Inoue et al., “Exploratory study of the new B-doped diamond heater at high pressure and temperature and its application to in situ XRD experiments on hydrous Mg-silicate melt,” High Pressure Res. 28, 255–264 (2008).10.1080/08957950802261042
    [4]
    [5]
    D. Testemale, R. Argoud, O. Geaymond, and J.-L. Hazemann, “High pressure/high temperature cell for x-ray absorption and scattering techniques,” Rev. Sci. Instrum. 76, 043905 (2005).10.1063/1.1884188
    [6]
    [7]
    K. D. Liss, K. I. Funakoshi, R. Dippenaar, Y. Higo, A. Shiro et al., “Hydrostatic compression behavior and high-pressure stabilized β-phase in γ-based titanium aluminide intermetallics,” Metals 6, 165 (2016).10.3390/met6070165
    [8]
    M. E. Alabdulkarim, W. D. Maxwell, V. Thapliyal, and J. L. Maxwell, “A comprehensive review of high-pressure laser-induced materials processing, Part I: Laser-heated diamond anvil cells,” J. Manuf. Mater. Process. 6(5), 111 (2022).10.3390/jmmp6050111
    [9]
    B. Wei, L. Lin, J. Zhang, Z. Zhan, Z. Cheng et al., “In situ measurement techniques using diamond anvil cell at high pressure–temperature conditions: A review,” Phys. Status Solidi RRL 18, 2300469 (2024).10.1002/pssr.202300469
    [10]
    S. Wang, M. Berrada, K.-H. Chao, X. Lai, F. Zhu et al., “Externally heated diamond anvil cell experimentation (EH-DANCE) for studying materials and processes under extreme conditions,” Rev. Sci. Instrum. 94, 123902 (2023).10.1063/5.0180103
    [11]
    X. Lai, F. Zhu, J. S. Zhang, D. Zhang, S. Tkachev et al., “An externally-heated diamond anvil cell for synthesis and single-crystal elasticity determination of ice-VII at high pressure-temperature conditions,” J. Visualized Exp. 160, e61389 (2020).10.3791/61389
    [12]
    T. Irifune, T. Kunimoto, T. Shinmei, and Y. Tange, “High pressure generation in Kawai-type multianvil apparatus using nano-polycrystalline diamond anvils,” C. R. Géosci. 351, 260–268 (2018).10.1016/j.crte.2018.07.005
    [13]
    Y. Kanke, M. Akaishi, S. Yamaoka, and T. Taniguchi, “Heater cell for materials synthesis and crystal growth in the large volume high pressure apparatus at 10 GPa,” Rev. Sci. Instrum. 73, 3268–3270 (2002).10.1063/1.1499760
    [14]
    E. Ito and T. Katsura, “Melting of ferromagnesian silicates under the lower mantle conditions,” in High-Pressure Research: Application to Earth and Planetary Sciences, 67 (Advancing Earth and Space Science, 1992), pp. 315–322.
    [15]
    J. Zhang, R. C. Liebermann, T. Gasparik, C. T. Herzberg, and Y. Fei, “Melting and subsolidus relations of SiO2 at 9–14 GPa,” J. Geophys. Res.: Solid Earth 98, 19785–19793, (1993).10.1029/93jb02218
    [16]
    A. I. Borimsky, V. B. Volkov, and P. A. Nagorny, “High pressure cell heaters for diamond synthesis,” Process Technol. Proc. 12, 651–654 (1996).10.1016/s0921-8610(96)80111-7
    [17]
    D. Luo, L. Yang, H. Xie, S. Srinivasan, J. Tian et al., “Atomistic evidence of nucleation mechanism for the direct graphite-to-diamond transformation,” Carbon 229, 119538 (2024).10.1016/j.carbon.2024.119538
    [18]
    G. W. Chen, S.-C. Zhu, L. Xu, Y.-M. Li, Z.-P. Liu et al., “The transformation mechanism of graphite to hexagonal diamond under shock conditions,” JACS Au 4, 3413–3420 (2024).10.1021/jacsau.4c00523
    [19]
    M. A. Andrianov, V. L. Balkevich, and V. E. Sotnikov, “Use of lanthanum chromite for making electric heaters,” Refractories 21, 592–596 (1980).10.1007/bf01398327
    [20]
    T. Xia, Y. Han, C. Zhu, Z. Sun, C. Yuan et al., “Thermochemical mechanism of optimized lanthanum chromite heaters for high-pressure and high-temperature experiments,” ACS Appl. Mater. Interfaces 14, 32244–32252 (2022).10.1021/acsami.2c07639
    [21]
    A. Shatskiy, D. Yamazaki, G. Morard, T. Cooray, T. Matsuzaki et al., “Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments,” Rev. Sci. Instrum. 80, 023907 (2009).10.1063/1.3084209
    [22]
    F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. U. Mao et al., “The pressure-temperature phase and transformation diagram for carbon; updated through 1994,” Carbon 34, 141–153 (1996).10.1016/0008-6223(96)00170-4
    [23]
    H. Ozawa, S. Tateno, L. Xie, Y. Nakajima, N. Sakamoto et al., “Boron-doped diamond as a new heating element for internal-resistive heated diamond-anvil cell,” High Pressure Res. 38, 120–135 (2018).10.1080/08957959.2018.1441407
    [24]
    F. Xu, L. Xie, A. Yoneda, N. Guignot, A. King et al., “TiC-MgO composite: An x-ray transparent and machinable heating element in a multi-anvil high pressure apparatus,” High Pressure Res. 40, 257–266 (2020).10.1080/08957959.2020.1747452
    [25]
    L. Guan, M. Schwarz, R. Zhang, and E. Kroke, “Polymer-precursor-derived (am-) SiC/TiC composites for resistive heaters in large volume multi-anvil high pressure/high-temperature apparatus,” High Pressure Res. 36, 167–186 (2016).10.1080/08957959.2016.1164857
    [26]
    P. S. Sokolov, V. A. Mukhanov, T. Chauveau, and V. L. Solozhenko, “On melting of silicon carbide under pressure,” J. Superhard Mater. 34, 339–341 (2012).10.3103/s1063457612050097
    [27]
    M. Yoshida, A. Onodera, M. Ueno, K. Takemura, and O. Shimomura, “Pressure-induced phase transition in SiC,” Phys. Rev. B 48, 10587–10590 (1993).10.1103/physrevb.48.10587
    [28]
    G. Gradinaru, T. S. Sudarshan, S. A. Gradinaru, W. Mitchell, and H. M. Hobgood, “Electrical properties of high resistivity 6H–SiC under high temperature/high field stress,” Appl. Phys. Lett. 70, 735–737 (1997).10.1063/1.118264
    [29]
    F. W. Vahldiek, “Electrical resistivity, elastic modulus, and debye temperature of titanium diboride,” J. Less Common Met. 12, 202–209 (1967).10.1016/0022-5088(67)90115-4
    [30]
    B. Song, W. Yang, X. Liu, H. Chen, and M. Akhlaghi, “Microstructural characterization of TiB2–SiC–BN ceramics prepared by hot pressing,” Ceram. Int. 47, 29174–29182 (2021).10.1016/j.ceramint.2021.07.080
    [31]
    V. H. Nguyen, M. Shahedi Asl, Z. Hamidzadeh Mahaseni, M. Dashti Germi, S. A. Delbari et al., “Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method,” Ceram. Int. 46, 25341–25350 (2020).10.1016/j.ceramint.2020.07.001
    [32]
    X. Yang, J. Chen, R. Xing, and A. Babapoor, “Hot-pressing and characterization of TiB2–SiC composites with different amounts of BN additive,” Ceram. Int. 47, 16652–16660 (2021).10.1016/j.ceramint.2021.02.236
    [33]
    Y. Zhou, Z.-Y. Dong, W.-P. Hsieh, A. F. Goncharov, and X.-J. Chen, “Thermal conductivity of materials under pressure,” Nat. Rev. Phys. 4, 319–335 (2022).10.1038/s42254-022-00423-9
    [34]
    D. Walker, M. A. Carpenter, and C. M. Hitch, “Some simplifications to multianvil devices for high pressure experiments,” Am. Mineral. 75, 1020–1028 (1990).
    [35]
    D. Walker, “Lubrication, gasketing, and precision in multianvil experiments,” Am. Mineral. 76, 1092–1100 (1991).
    [36]
    D. Walker and J. Li, “Castable solid pressure media for multianvil devices,” Matter Radiat. Extremes 5, 018402 (2020).10.1063/1.5129534
    [37]
    L. Fang, G. Yang, G. Niu, R. He, J. Sun et al., “New single-toroidal sintered diamond anvil and assembly for high pressure neutron diffraction,” Nucl. Anal. 4, 100142 (2025).10.1016/j.nucana.2024.100142
    [38]
    W. Qide and T. Yuanfen, “Study on the oxidation mechanism and the resistance to oxidation of SiC materials,” Ceram. Sci. Art 1, 7–13 (2002) (in Chinese).
    [39]
    D. T. Cromer and D. A. Liberman, “Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge,” Acta Crystallogr., Sect. A 37, 267–268 (1981).10.1107/s0567739481000600
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return