| Citation: | Sun Liang, Chen Bo, Chen Zhongjing, Dai Jiayu, Yang Wenge, Sekine Toshimori, Mao Ho-Kwang. Investigating phase dynamics of materials under laser-induced extreme conditions[J]. Matter and Radiation at Extremes, 2025, 10(6): 063002. doi: 10.1063/5.0274747 |
| [1] |
H.-K. Mao, B. Chen, H. Gou, K. Li, J. Liu et al., “2023 HP special volume: Synergistic progress of high-pressure physics and chemistry,” Matter Radiat. Extremes 9, 063001 (2024).10.1063/5.0244367
|
| [2] |
T. Guillot and D. Gautier, “Giant planets,” in Treatise on Geophysics (Elsevier, 2015), pp. 529–557.
|
| [3] |
T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
|
| [4] |
T. Sekine, Shock-Induced Chemistry (Springer Nature Singapore, Singapore, 2024).
|
| [5] |
J. Yang and W. Du, “High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith,” Matter Radiat. Extremes 9, 027401 (2024).10.1063/5.0148784
|
| [6] |
F. Yin, M. Chen, W. Yang, and H.-k. Mao, “Discovery of the Hailin impact crater in northeast China,” Matter Radiat. Extremes 10, 013001 (2025).10.1063/5.0236993
|
| [7] |
X. Zhao, F. Ren, J. He, Y. Pan, H. Tang et al., “Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press,” Matter Radiat. Extremes 10, 047801 (2025).10.1063/5.0249620
|
| [8] |
J. Shen and W. Kang, “Fundamental influence of irreversible stress–strain properties in solids on the validity of the ramp loading method,” Matter Radiat. Extremes 9, 067801 (2024).10.1063/5.0210797
|
| [9] |
H.-S. Park, S. J. M. Ali, P. M. Celliers, F. Coppari, J. Eggert et al., “Techniques for studying materials under extreme states of high energy density compression,” Phys. Plasmas 28, 060901 (2021).10.1063/5.0046199
|
| [10] |
P. M. Celliers and M. Millot, “Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences,” Rev. Sci. Instrum. 94, 011101 (2023).10.1063/5.0123439
|
| [11] |
J. R. Rygg, R. F. Smith, A. E. Lazicki, D. G. Braun, D. E. Fratanduono et al., “X-ray diffraction at the National Ignition Facility,” Rev. Sci. Instrum. 91, 043902 (2020).10.1063/1.5129698
|
| [12] |
J. Yang, X. Wang, L. Xu, Q. Wang, Y. Sun et al., “Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction,” Matter Radiat. Extremes 9, 057803 (2024).10.1063/5.0200242
|
| [13] |
L. Sun, H. Liu, X. Duan, H. Zhang, Z. Guan et al., “In situ XRD measurement for high-pressure iron in laser-driven off-Hugoniot state,” Minerals 14, 715 (2024).10.3390/min14070715
|
| [14] |
L. Wegert, S. Schreiner, C. Rauch, B. Albertazzi, P. Bleuel et al., “Demonstrating grating-based phase-contrast imaging of laser-driven shock waves,” Matter Radiat. Extremes 9, 047803 (2024).10.1063/5.0200440
|
| [15] |
S. Pascarelli, M. McMahon, C. Pépin, O. Mathon, R. F. Smith et al., “Materials under extreme conditions using large X-ray facilities,” Nat. Rev. Methods Primers 3, 82 (2023).10.1038/s43586-023-00264-5
|
| [16] |
N. Huang, H. Deng, B. Liu, D. Wang, and Z. Zhao, “Features and futures of X-ray free-electron lasers,” Innovation 2, 100097 (2021).10.1016/j.xinn.2021.100097
|
| [17] |
Q. Zeng, B. Chen, S. Zhang, D. Kang, H. Wang et al., “Full-scale ab initio simulations of laser-driven atomistic dynamics,” npj Comput. Mater. 9, 213 (2023).10.1038/s41524-023-01168-4
|
| [18] |
Z. Wang, X. Luo, Q. Wang, H. Ge, P. Gao et al., “Advances in high-pressure materials discovery enabled by machine learning,” Matter Radiat. Extremes 10, 033801 (2025).10.1063/5.0255385
|
| [19] |
H. Zhang, Y. Yang, W. Yang, Z. Guan, X. Duan et al., “Equation of state for boron nitride along the principal Hugoniot to 16 Mbar,” Matter Radiat. Extremes 9, 057403 (2024).10.1063/5.0206889
|
| [20] |
H. Hwang, E. Galtier, H. Cynn, I. Eom, S. H. Chun et al., “Subnanosecond phase transition dynamics in laser-shocked iron,” Sci. Adv. 6, eaaz5132 (2020).10.1126/sciadv.aaz5132
|
| [21] |
R. Briggs, F. Coppari, M. G. Gorman, R. F. Smith, S. J. Tracy et al., “Measurement of body-centered cubic gold and melting under shock compression,” Phys. Rev. Lett. 123, 045701 (2019).10.1103/physrevlett.123.045701
|
| [22] |
S. Makarov, S. Dyachkov, T. Pikuz, K. Katagiri, H. Nakamura et al., “Direct imaging of shock wave splitting in diamond at Mbar pressure,” Matter Radiat. Extremes 8, 066601 (2023).10.1063/5.0156681
|
| [23] |
C. Crépisson, A. Amouretti, M. Harmand, C. Sanloup, P. Heighway et al., “Shock-driven amorphization and melting in Fe2O3,” Phys. Rev. B 111, 024209 (2025).10.1103/physrevb.111.024209
|
| [24] |
A. L. Coleman, M. G. Gorman, R. Briggs, R. S. McWilliams, D. McGonegle et al., “Identification of phase transitions and metastability in dynamically compressed antimony using ultrafast X-ray diffraction,” Phys. Rev. Lett. 122, 255704 (2019).10.1103/physrevlett.122.255704
|
| [25] |
M. Li, X. Liu, S. Jiang, J. S. Smith, L. Wang et al., “Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium,” Matter Radiat. Extremes 10, 037801 (2025).10.1063/5.0256231
|
| [26] |
A. Lazicki, D. McGonegle, J. R. Rygg, D. G. Braun, D. C. Swift et al., “Metastability of diamond ramp-compressed to 2 terapascals,” Nature 589, 532–535 (2021).10.1038/s41586-020-03140-4
|
| [27] |
J. Sun, D. D. Klug, and R. Martoňák, “Structural transformations in carbon under extreme pressure: Beyond diamond,” J. Chem. Phys. 130, 194512 (2009).10.1063/1.3139060
|
| [28] |
P. Renganathan and Y. M. Gupta, “Melting anisotropy in crystalline solids,” Phys. Rev. B 109, L060102 (2024).10.1103/physrevb.109.l060102
|
| [29] |
Z. Ye, R. F. Smith, M. Millot, M. Sims, D. Tsapetis et al., “Shock equation of state experiments in MgO up to 1.5 TPa and the effects of optical depth on temperature determination,” J. Appl. Phys. 136, 105904 (2024).10.1063/5.0226765
|
| [30] |
M. M. Budzevich, V. V. Zhakhovsky, C. T. White, and I. I. Oleynik, “Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum,” Phys. Rev. Lett. 109, 125505 (2012).10.1103/physrevlett.109.125505
|
| [31] |
S. Pan, J. Shi, Z. Liang, C. Liu, J. Wang et al., “Shock compression pathways to pyrite silica from machine learning simulations,” Phys. Rev. B 110, 224101 (2024).10.1103/physrevb.110.224101
|
| [32] |
C. E. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki et al., “In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics,” Nature 550, 496–499 (2017).10.1038/nature24061
|
| [33] |
S. M. Sharma, S. J. Turneaure, J. M. Winey, P. A. Rigg, N. Sinclair et al., “Real-time observation of stacking faults in gold shock compressed to 150 GPa,” Phys. Rev. X 10, 011010 (2020).10.1103/physrevx.10.011010
|
| [34] |
S. J. Tracy, S. J. Turneaure, and T. S. Duffy, “In situ X-ray diffraction of shock-compressed fused silica,” Phys. Rev. Lett. 120, 125702 (2018).10.1103/PhysRevLett.120.125702
|
| [35] |
A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier et al., “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).10.1038/ncomms9191
|
| [36] |
S. Zhao, B. Kad, C. E. Wehrenberg, B. A. Remington, E. N. Hahn et al., “Generating gradient germanium nanostructures by shock-induced amorphization and crystallization,” Proc. Natl. Acad. Sci. U. S. A. 114, 9791–9796 (2017).10.1073/pnas.1708853114
|
| [37] |
S. Singh, M. G. Gorman, P. G. Heighway, J. V. Bernier, D. McGonegle et al., “Unexpected observation of disorder and multiple phase-transition pathways in shock-compressed Zr,” Phys. Rev. Lett. 133, 096101 (2024).10.1103/physrevlett.133.096101
|
| [38] |
A. K. Schuster, K. Voigt, B. Klemmed, N. J. Hartley, J. Lütgert et al., “Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: In search of diamonds,” J. Phys. D: Appl. Phys. 56, 025301 (2023).10.1088/1361-6463/ac99e8
|
| [39] |
J. Hu, P. D. Asimow, Y. Liu, and C. Ma, “Shock-recovered maskelynite indicates low-pressure ejection of shergottites from Mars,” Sci. Adv. 9, eadf2906 (2023).10.1126/sciadv.adf2906
|
| [40] |
Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).10.1038/nmat4447
|
| [41] |
P. C. Myint, A. A. Chernov, B. Sadigh, L. X. Benedict, B. M. Hall et al., “Nanosecond freezing of water at high pressures: Nucleation and growth near the metastability limit,” Phys. Rev. Lett. 121, 155701 (2018).10.1103/physrevlett.121.155701
|
| [42] |
X. Feng, S. Pan, K. Katagiri, J. Shi, J. Qu et al., “Nanosecond structural evolution in shocked coesite,” Sci. Adv. 11, eads3139 (2025).10.1126/sciadv.ads3139
|
| [43] |
M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte et al., “Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction,” Science 360, 1451–1455 (2018).10.1126/science.aar2058
|
| [44] |
P. Renganathan, S. M. Sharma, S. J. Turneaure, and Y. M. Gupta, “Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting,” Sci. Adv. 9, eade5745 (2023).10.1126/sciadv.ade5745
|
| [45] |
P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018).10.1126/science.aat0970
|
| [46] |
M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471
|
| [47] |
E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie et al., “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter Radiat. Extremes 5, 038101 (2020).10.1063/5.0002104
|
| [48] |
P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631–635 (2020).10.1038/s41586-019-1927-3
|
| [49] |
R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017).10.1126/science.aal1579
|
| [50] |
H. Y. Geng, “Public debate on metallic hydrogen to boost high pressure research,” Matter Radiat. Extremes 2, 275–277 (2017).10.1016/j.mre.2017.10.001
|
| [51] |
R. Helled, G. Mazzola, and R. Redmer, “Understanding dense hydrogen at planetary conditions,” Nat. Rev. Phys. 2, 562–574 (2020).10.1038/s42254-020-0223-3
|
| [52] |
X. Chang, B. Chen, Q. Zeng, H. Wang, K. Chen et al., “Theoretical evidence of H-He demixing under Jupiter and Saturn conditions,” Nat. Commun. 15, 8543 (2024).10.1038/s41467-024-52868-4
|
| [53] |
A. K. Schwemmlein, G. W. Collins, A. J. LaPierre, Z. K. Sprowal, D. N. Polsin et al., “A platform for planar dynamic compression of crystalline hydrogen toward the terapascal regime,” Rev. Sci. Instrum. 95, 073901 (2024).10.1063/5.0205013
|
| [54] |
T. Duffy, N. Madhusudhan, and K. K. M. Lee, “Mineralogy of super-earth planets,” in Treatise on Geophysics (Elsevier, 2015), pp. 149–178.
|
| [55] |
P. Dalladay-Simpson, B. Monserrat, L. Zhang, and F. Gorelli, “Distinct vibrational signatures and complex phase behavior in metallic oxygen,” Matter Radiat. Extremes 9, 028401 (2024).10.1063/5.0160060
|
| [56] |
M. Hou, Y. He, B. G. Jang, S. Sun, Y. Zhuang et al., “Superionic iron oxide–hydroxide in Earth’s deep mantle,” Nat. Geosci. 14, 174–178 (2021).10.1038/s41561-021-00696-2
|
| [57] |
M. Millot, F. Coppari, J. R. Rygg, A. Correa Barrios, S. Hamel et al., “Nanosecond X-ray diffraction of shock-compressed superionic water ice,” Nature 569, 251–255 (2019).10.1038/s41586-019-1114-6
|
| [58] |
Y. Zhang, Y. Wang, Y. Huang, J. Wang, Z. Liang et al., “Collective motion in hcp-Fe at Earth’s inner core conditions,” Proc. Natl. Acad. Sci. U. S. A. 120, e2309952120 (2023).10.1073/pnas.2309952120
|
| [59] |
Y. He, S. Sun, D. Y. Kim, B. G. Jang, H. Li et al., “Superionic iron alloys and their seismic velocities in Earth’s inner core,” Nature 602, 258–262 (2022).10.1038/s41586-021-04361-x
|
| [60] |
C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland et al., “Cold melting and solid structures of dense lithium,” Nat. Phys. 7, 211–214 (2011).10.1038/nphys1864
|
| [61] |
D. Kraus, J. Rips, M. Schörner, M. G. Stevenson, J. Vorberger et al., “The structure of liquid carbon elucidated by in situ X-ray diffraction,” Nature 642, 351–355 (2025).10.1038/s41586-025-09035-6
|
| [62] |
H. Zong, V. N. Robinson, A. Hermann, L. Zhao, S. Scandolo et al., “Free electron to electride transition in dense liquid potassium,” Nat. Phys. 17, 955–960 (2021).10.1038/s41567-021-01244-w
|
| [63] |
D. H. Dolan, M. D. Knudson, C. A. Hall, and C. Deeney, “A metastable limit for compressed liquid water,” Nat. Phys. 3, 339–342 (2007).10.1038/nphys562
|
| [64] |
E. Greenberg, R. Nazarov, A. Landa, J. Ying, R. Q. Hood et al., “Phase transitions and spin state of iron in FeO under the conditions of Earth’s deep interior,” Phys. Rev. B 107, L241103 (2023).10.1103/physrevb.107.l241103
|
| [65] |
K. Umemoto and R. M. Wentzcovitch, “Ab initio exploration of post-PPV transitions in low-pressure analogs of MgSiO3,” Phys. Rev. Mater. 3, 123601 (2019).10.1103/physrevmaterials.3.123601
|
| [66] |
N. Greiner, D. Phillips, and J. Johnson, “Diamonds in detonation soot,” Nature 333, 440–442 (1988).10.1038/333440a0
|
| [67] |
M. Frost, R. S. McWilliams, E. Bykova, M. Bykov, R. J. Husband et al., “Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions,” Nat. Astron. 8, 174–181 (2024).10.1038/s41550-023-02147-x
|
| [68] |
D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher et al., “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606–611 (2017).10.1038/s41550-017-0219-9
|
| [69] |
T. M. Hartsfield, B. M. La Lone, G. D. Stevens, M. T. Beason, J. K. Baldwin et al., “Temperature, enthalpy, and kinetics of cerium resolidification under dynamic compression,” Phys. Rev. B 108, L140101 (2023).10.1103/physrevb.108.l140101
|
| [70] |
Y.-A. Peng, H.-Y. Wang, F.-H. Su, P. Wang, H.-A. Xu et al., “Synthesis of lutetium hydrides at high pressures,” Matter Radiat. Extremes 10, 017804 (2025).10.1063/5.0227283
|
| [71] |
Y. Liu, H. Lou, F. Zhang, Z. Zeng, and Q. Zeng, “Short-range order in binary and multiple principal element alloys: A review,” Matter Radiat. Extremes 10, 043801 (2025).10.1063/5.0275123
|