Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 6
Nov.  2025
Turn off MathJax
Article Contents
Sun Liang, Chen Bo, Chen Zhongjing, Dai Jiayu, Yang Wenge, Sekine Toshimori, Mao Ho-Kwang. Investigating phase dynamics of materials under laser-induced extreme conditions[J]. Matter and Radiation at Extremes, 2025, 10(6): 063002. doi: 10.1063/5.0274747
Citation: Sun Liang, Chen Bo, Chen Zhongjing, Dai Jiayu, Yang Wenge, Sekine Toshimori, Mao Ho-Kwang. Investigating phase dynamics of materials under laser-induced extreme conditions[J]. Matter and Radiation at Extremes, 2025, 10(6): 063002. doi: 10.1063/5.0274747

Investigating phase dynamics of materials under laser-induced extreme conditions

doi: 10.1063/5.0274747
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: sunliangyp@outlook.com
  • Received Date: 2025-04-08
  • Accepted Date: 2025-09-09
  • Available Online: 2025-11-28
  • Publish Date: 2025-11-01
  • Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials, enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments. These dynamic high-pressure states are relevant to a wide range of phenomena, including planetary formation, asteroid impacts, spacecraft shielding, and inertial confinement fusion. The integration of advanced X-ray diffraction experimental techniques, from laser-induced X-ray sources and X-ray free-electron lasers, and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions. This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide, concentrating on dynamical phase transitions, metastable and transient states, the influence of crystal orientation, microstructural changes, and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.
  • Author Contributions
    Liang Sun: Conceptualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Bo Chen: Conceptualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Zhongjing Chen: Conceptualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Jiayu Dai: Conceptualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Wenge Yang: Conceptualization (equal); Supervision (equal); Writing – original draft (equal); Writing – review & editing (equal). Toshimori Sekine: Conceptualization (equal); Supervision (equal); Writing – review & editing (equal). Ho-Kwang Mao: Conceptualization (equal); Supervision (equal); Writing – review & editing (equal).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    H.-K. Mao, B. Chen, H. Gou, K. Li, J. Liu et al., “2023 HP special volume: Synergistic progress of high-pressure physics and chemistry,” Matter Radiat. Extremes 9, 063001 (2024).10.1063/5.0244367
    [2]
    T. Guillot and D. Gautier, “Giant planets,” in Treatise on Geophysics (Elsevier, 2015), pp. 529–557.
    [3]
    T. S. Duffy and R. F. Smith, “Ultra-high pressure dynamic compression of geological materials,” Front. Earth Sci. 7, 23 (2019).10.3389/feart.2019.00023
    [4]
    T. Sekine, Shock-Induced Chemistry (Springer Nature Singapore, Singapore, 2024).
    [5]
    J. Yang and W. Du, “High-pressure minerals and new lunar mineral changesite-(Y) in Chang’e-5 regolith,” Matter Radiat. Extremes 9, 027401 (2024).10.1063/5.0148784
    [6]
    F. Yin, M. Chen, W. Yang, and H.-k. Mao, “Discovery of the Hailin impact crater in northeast China,” Matter Radiat. Extremes 10, 013001 (2025).10.1063/5.0236993
    [7]
    X. Zhao, F. Ren, J. He, Y. Pan, H. Tang et al., “Ultrahigh-pressure generation above 50 GPa in a Kawai-type large-volume press,” Matter Radiat. Extremes 10, 047801 (2025).10.1063/5.0249620
    [8]
    J. Shen and W. Kang, “Fundamental influence of irreversible stress–strain properties in solids on the validity of the ramp loading method,” Matter Radiat. Extremes 9, 067801 (2024).10.1063/5.0210797
    [9]
    H.-S. Park, S. J. M. Ali, P. M. Celliers, F. Coppari, J. Eggert et al., “Techniques for studying materials under extreme states of high energy density compression,” Phys. Plasmas 28, 060901 (2021).10.1063/5.0046199
    [10]
    P. M. Celliers and M. Millot, “Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences,” Rev. Sci. Instrum. 94, 011101 (2023).10.1063/5.0123439
    [11]
    J. R. Rygg, R. F. Smith, A. E. Lazicki, D. G. Braun, D. E. Fratanduono et al., “X-ray diffraction at the National Ignition Facility,” Rev. Sci. Instrum. 91, 043902 (2020).10.1063/1.5129698
    [12]
    J. Yang, X. Wang, L. Xu, Q. Wang, Y. Sun et al., “Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction,” Matter Radiat. Extremes 9, 057803 (2024).10.1063/5.0200242
    [13]
    L. Sun, H. Liu, X. Duan, H. Zhang, Z. Guan et al., “In situ XRD measurement for high-pressure iron in laser-driven off-Hugoniot state,” Minerals 14, 715 (2024).10.3390/min14070715
    [14]
    L. Wegert, S. Schreiner, C. Rauch, B. Albertazzi, P. Bleuel et al., “Demonstrating grating-based phase-contrast imaging of laser-driven shock waves,” Matter Radiat. Extremes 9, 047803 (2024).10.1063/5.0200440
    [15]
    S. Pascarelli, M. McMahon, C. Pépin, O. Mathon, R. F. Smith et al., “Materials under extreme conditions using large X-ray facilities,” Nat. Rev. Methods Primers 3, 82 (2023).10.1038/s43586-023-00264-5
    [16]
    N. Huang, H. Deng, B. Liu, D. Wang, and Z. Zhao, “Features and futures of X-ray free-electron lasers,” Innovation 2, 100097 (2021).10.1016/j.xinn.2021.100097
    [17]
    Q. Zeng, B. Chen, S. Zhang, D. Kang, H. Wang et al., “Full-scale ab initio simulations of laser-driven atomistic dynamics,” npj Comput. Mater. 9, 213 (2023).10.1038/s41524-023-01168-4
    [18]
    Z. Wang, X. Luo, Q. Wang, H. Ge, P. Gao et al., “Advances in high-pressure materials discovery enabled by machine learning,” Matter Radiat. Extremes 10, 033801 (2025).10.1063/5.0255385
    [19]
    H. Zhang, Y. Yang, W. Yang, Z. Guan, X. Duan et al., “Equation of state for boron nitride along the principal Hugoniot to 16 Mbar,” Matter Radiat. Extremes 9, 057403 (2024).10.1063/5.0206889
    [20]
    H. Hwang, E. Galtier, H. Cynn, I. Eom, S. H. Chun et al., “Subnanosecond phase transition dynamics in laser-shocked iron,” Sci. Adv. 6, eaaz5132 (2020).10.1126/sciadv.aaz5132
    [21]
    R. Briggs, F. Coppari, M. G. Gorman, R. F. Smith, S. J. Tracy et al., “Measurement of body-centered cubic gold and melting under shock compression,” Phys. Rev. Lett. 123, 045701 (2019).10.1103/physrevlett.123.045701
    [22]
    S. Makarov, S. Dyachkov, T. Pikuz, K. Katagiri, H. Nakamura et al., “Direct imaging of shock wave splitting in diamond at Mbar pressure,” Matter Radiat. Extremes 8, 066601 (2023).10.1063/5.0156681
    [23]
    C. Crépisson, A. Amouretti, M. Harmand, C. Sanloup, P. Heighway et al., “Shock-driven amorphization and melting in Fe2O3,” Phys. Rev. B 111, 024209 (2025).10.1103/physrevb.111.024209
    [24]
    A. L. Coleman, M. G. Gorman, R. Briggs, R. S. McWilliams, D. McGonegle et al., “Identification of phase transitions and metastability in dynamically compressed antimony using ultrafast X-ray diffraction,” Phys. Rev. Lett. 122, 255704 (2019).10.1103/physrevlett.122.255704
    [25]
    M. Li, X. Liu, S. Jiang, J. S. Smith, L. Wang et al., “Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium,” Matter Radiat. Extremes 10, 037801 (2025).10.1063/5.0256231
    [26]
    A. Lazicki, D. McGonegle, J. R. Rygg, D. G. Braun, D. C. Swift et al., “Metastability of diamond ramp-compressed to 2 terapascals,” Nature 589, 532–535 (2021).10.1038/s41586-020-03140-4
    [27]
    J. Sun, D. D. Klug, and R. Martoňák, “Structural transformations in carbon under extreme pressure: Beyond diamond,” J. Chem. Phys. 130, 194512 (2009).10.1063/1.3139060
    [28]
    P. Renganathan and Y. M. Gupta, “Melting anisotropy in crystalline solids,” Phys. Rev. B 109, L060102 (2024).10.1103/physrevb.109.l060102
    [29]
    Z. Ye, R. F. Smith, M. Millot, M. Sims, D. Tsapetis et al., “Shock equation of state experiments in MgO up to 1.5 TPa and the effects of optical depth on temperature determination,” J. Appl. Phys. 136, 105904 (2024).10.1063/5.0226765
    [30]
    M. M. Budzevich, V. V. Zhakhovsky, C. T. White, and I. I. Oleynik, “Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum,” Phys. Rev. Lett. 109, 125505 (2012).10.1103/physrevlett.109.125505
    [31]
    S. Pan, J. Shi, Z. Liang, C. Liu, J. Wang et al., “Shock compression pathways to pyrite silica from machine learning simulations,” Phys. Rev. B 110, 224101 (2024).10.1103/physrevb.110.224101
    [32]
    C. E. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki et al., “In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics,” Nature 550, 496–499 (2017).10.1038/nature24061
    [33]
    S. M. Sharma, S. J. Turneaure, J. M. Winey, P. A. Rigg, N. Sinclair et al., “Real-time observation of stacking faults in gold shock compressed to 150 GPa,” Phys. Rev. X 10, 011010 (2020).10.1103/physrevx.10.011010
    [34]
    S. J. Tracy, S. J. Turneaure, and T. S. Duffy, “In situ X-ray diffraction of shock-compressed fused silica,” Phys. Rev. Lett. 120, 125702 (2018).10.1103/PhysRevLett.120.125702
    [35]
    A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier et al., “Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2,” Nat. Commun. 6, 8191 (2015).10.1038/ncomms9191
    [36]
    S. Zhao, B. Kad, C. E. Wehrenberg, B. A. Remington, E. N. Hahn et al., “Generating gradient germanium nanostructures by shock-induced amorphization and crystallization,” Proc. Natl. Acad. Sci. U. S. A. 114, 9791–9796 (2017).10.1073/pnas.1708853114
    [37]
    S. Singh, M. G. Gorman, P. G. Heighway, J. V. Bernier, D. McGonegle et al., “Unexpected observation of disorder and multiple phase-transition pathways in shock-compressed Zr,” Phys. Rev. Lett. 133, 096101 (2024).10.1103/physrevlett.133.096101
    [38]
    A. K. Schuster, K. Voigt, B. Klemmed, N. J. Hartley, J. Lütgert et al., “Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: In search of diamonds,” J. Phys. D: Appl. Phys. 56, 025301 (2023).10.1088/1361-6463/ac99e8
    [39]
    J. Hu, P. D. Asimow, Y. Liu, and C. Ma, “Shock-recovered maskelynite indicates low-pressure ejection of shergottites from Mars,” Sci. Adv. 9, eadf2906 (2023).10.1126/sciadv.adf2906
    [40]
    Y. Shen, S. B. Jester, T. Qi, and E. J. Reed, “Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2,” Nat. Mater. 15, 60–65 (2016).10.1038/nmat4447
    [41]
    P. C. Myint, A. A. Chernov, B. Sadigh, L. X. Benedict, B. M. Hall et al., “Nanosecond freezing of water at high pressures: Nucleation and growth near the metastability limit,” Phys. Rev. Lett. 121, 155701 (2018).10.1103/physrevlett.121.155701
    [42]
    X. Feng, S. Pan, K. Katagiri, J. Shi, J. Qu et al., “Nanosecond structural evolution in shocked coesite,” Sci. Adv. 11, eads3139 (2025).10.1126/sciadv.ads3139
    [43]
    M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte et al., “Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction,” Science 360, 1451–1455 (2018).10.1126/science.aar2058
    [44]
    P. Renganathan, S. M. Sharma, S. J. Turneaure, and Y. M. Gupta, “Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting,” Sci. Adv. 9, eade5745 (2023).10.1126/sciadv.ade5745
    [45]
    P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono et al., “Insulator-metal transition in dense fluid deuterium,” Science 361, 677–682 (2018).10.1126/science.aat0970
    [46]
    M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471
    [47]
    E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie et al., “Everything you always wanted to know about metallic hydrogen but were afraid to ask,” Matter Radiat. Extremes 5, 038101 (2020).10.1063/5.0002104
    [48]
    P. Loubeyre, F. Occelli, and P. Dumas, “Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen,” Nature 577, 631–635 (2020).10.1038/s41586-019-1927-3
    [49]
    R. P. Dias and I. F. Silvera, “Observation of the Wigner-Huntington transition to metallic hydrogen,” Science 355, 715–718 (2017).10.1126/science.aal1579
    [50]
    H. Y. Geng, “Public debate on metallic hydrogen to boost high pressure research,” Matter Radiat. Extremes 2, 275–277 (2017).10.1016/j.mre.2017.10.001
    [51]
    R. Helled, G. Mazzola, and R. Redmer, “Understanding dense hydrogen at planetary conditions,” Nat. Rev. Phys. 2, 562–574 (2020).10.1038/s42254-020-0223-3
    [52]
    X. Chang, B. Chen, Q. Zeng, H. Wang, K. Chen et al., “Theoretical evidence of H-He demixing under Jupiter and Saturn conditions,” Nat. Commun. 15, 8543 (2024).10.1038/s41467-024-52868-4
    [53]
    A. K. Schwemmlein, G. W. Collins, A. J. LaPierre, Z. K. Sprowal, D. N. Polsin et al., “A platform for planar dynamic compression of crystalline hydrogen toward the terapascal regime,” Rev. Sci. Instrum. 95, 073901 (2024).10.1063/5.0205013
    [54]
    T. Duffy, N. Madhusudhan, and K. K. M. Lee, “Mineralogy of super-earth planets,” in Treatise on Geophysics (Elsevier, 2015), pp. 149–178.
    [55]
    P. Dalladay-Simpson, B. Monserrat, L. Zhang, and F. Gorelli, “Distinct vibrational signatures and complex phase behavior in metallic oxygen,” Matter Radiat. Extremes 9, 028401 (2024).10.1063/5.0160060
    [56]
    M. Hou, Y. He, B. G. Jang, S. Sun, Y. Zhuang et al., “Superionic iron oxide–hydroxide in Earth’s deep mantle,” Nat. Geosci. 14, 174–178 (2021).10.1038/s41561-021-00696-2
    [57]
    M. Millot, F. Coppari, J. R. Rygg, A. Correa Barrios, S. Hamel et al., “Nanosecond X-ray diffraction of shock-compressed superionic water ice,” Nature 569, 251–255 (2019).10.1038/s41586-019-1114-6
    [58]
    Y. Zhang, Y. Wang, Y. Huang, J. Wang, Z. Liang et al., “Collective motion in hcp-Fe at Earth’s inner core conditions,” Proc. Natl. Acad. Sci. U. S. A. 120, e2309952120 (2023).10.1073/pnas.2309952120
    [59]
    Y. He, S. Sun, D. Y. Kim, B. G. Jang, H. Li et al., “Superionic iron alloys and their seismic velocities in Earth’s inner core,” Nature 602, 258–262 (2022).10.1038/s41586-021-04361-x
    [60]
    C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland et al., “Cold melting and solid structures of dense lithium,” Nat. Phys. 7, 211–214 (2011).10.1038/nphys1864
    [61]
    D. Kraus, J. Rips, M. Schörner, M. G. Stevenson, J. Vorberger et al., “The structure of liquid carbon elucidated by in situ X-ray diffraction,” Nature 642, 351–355 (2025).10.1038/s41586-025-09035-6
    [62]
    H. Zong, V. N. Robinson, A. Hermann, L. Zhao, S. Scandolo et al., “Free electron to electride transition in dense liquid potassium,” Nat. Phys. 17, 955–960 (2021).10.1038/s41567-021-01244-w
    [63]
    D. H. Dolan, M. D. Knudson, C. A. Hall, and C. Deeney, “A metastable limit for compressed liquid water,” Nat. Phys. 3, 339–342 (2007).10.1038/nphys562
    [64]
    E. Greenberg, R. Nazarov, A. Landa, J. Ying, R. Q. Hood et al., “Phase transitions and spin state of iron in FeO under the conditions of Earth’s deep interior,” Phys. Rev. B 107, L241103 (2023).10.1103/physrevb.107.l241103
    [65]
    K. Umemoto and R. M. Wentzcovitch, “Ab initio exploration of post-PPV transitions in low-pressure analogs of MgSiO3,” Phys. Rev. Mater. 3, 123601 (2019).10.1103/physrevmaterials.3.123601
    [66]
    N. Greiner, D. Phillips, and J. Johnson, “Diamonds in detonation soot,” Nature 333, 440–442 (1988).10.1038/333440a0
    [67]
    M. Frost, R. S. McWilliams, E. Bykova, M. Bykov, R. J. Husband et al., “Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions,” Nat. Astron. 8, 174–181 (2024).10.1038/s41550-023-02147-x
    [68]
    D. Kraus, J. Vorberger, A. Pak, N. J. Hartley, L. B. Fletcher et al., “Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions,” Nat. Astron. 1, 606–611 (2017).10.1038/s41550-017-0219-9
    [69]
    T. M. Hartsfield, B. M. La Lone, G. D. Stevens, M. T. Beason, J. K. Baldwin et al., “Temperature, enthalpy, and kinetics of cerium resolidification under dynamic compression,” Phys. Rev. B 108, L140101 (2023).10.1103/physrevb.108.l140101
    [70]
    Y.-A. Peng, H.-Y. Wang, F.-H. Su, P. Wang, H.-A. Xu et al., “Synthesis of lutetium hydrides at high pressures,” Matter Radiat. Extremes 10, 017804 (2025).10.1063/5.0227283
    [71]
    Y. Liu, H. Lou, F. Zhang, Z. Zeng, and Q. Zeng, “Short-range order in binary and multiple principal element alloys: A review,” Matter Radiat. Extremes 10, 043801 (2025).10.1063/5.0275123
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (87) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return