Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 6
Nov.  2025
Turn off MathJax
Article Contents
Wei Hao, Qiu Mengtong, Jiang Xiaofeng, Wang Zhiguo, Jiang Hongyu, Yao Weibo, Lai Dingguo, Wu Hanyu, Lou Cheng, Wang Jiachen, Yang Yaorong, Sun Fengju, Li Mo, Wang Liangping, Xu Qifu, Li Pengchao, Yang Sen, Shen Yi, Wu Zhen, Wang Jinhua, Liu Wei, Yang Hailiang, Wu Wei, Qiu Aici. A 4-MA linear transformer driver for X-ray generation[J]. Matter and Radiation at Extremes, 2025, 10(6): 067401. doi: 10.1063/5.0273536
Citation: Wei Hao, Qiu Mengtong, Jiang Xiaofeng, Wang Zhiguo, Jiang Hongyu, Yao Weibo, Lai Dingguo, Wu Hanyu, Lou Cheng, Wang Jiachen, Yang Yaorong, Sun Fengju, Li Mo, Wang Liangping, Xu Qifu, Li Pengchao, Yang Sen, Shen Yi, Wu Zhen, Wang Jinhua, Liu Wei, Yang Hailiang, Wu Wei, Qiu Aici. A 4-MA linear transformer driver for X-ray generation[J]. Matter and Radiation at Extremes, 2025, 10(6): 067401. doi: 10.1063/5.0273536

A 4-MA linear transformer driver for X-ray generation

doi: 10.1063/5.0273536
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: weihaoyy@sina.com
  • Received Date: 2025-03-31
  • Accepted Date: 2025-08-19
  • Available Online: 2025-11-28
  • Publish Date: 2025-11-01
  • We have designed, assembled, and tested a 4-MA, 60-ns fast linear transformer driver (LTD), which is the first operating generator featuring multiple LTD modules connected in parallel. The LTD-based accelerator comprises six modules in parallel, each of which has ten-stage cavities stacked in series. The six LTD modules are connected to a water tank of diameter 6 m via a 3-m-long impedance-matched deionized water-insulated coaxial transmission line. In the water tank, the electrical pulses are transmitted down by six horizontal tri-plate transmission lines. A 2.1-m-diameter two-level vacuum insulator stack is utilized to separate the deionized water region from the vacuum region. In the vacuum, the currents are further transported downstream by a two-level magnetically insulated transmission-line and then converged through four post-hole convolutes. Plasma radiation loads or bremsstrahlung electron beam diodes serve as loads that are expected to generate intense soft X rays or warm X rays. The machine is 3.2 m in height and 22 m in outer diameter, including support systems such as a high-voltage charge supply, magnetic core reset system, trigger system, and support platform for inner stalk installation and maintenance. A total of 1440 individual ±100-kV multi-gap spark switches and 2880 individual 100-kV capacitors are employed in the accelerator. A total of 12 fiber-optic laser-controlled trigger generators combining photoconductive and traditional gas spark switch technologies are used to realize the synchronous discharge of the more than 1000 gas switches. At an LTD charge voltage of ±85 kV, the accelerator stores an initial energy of about 300 kJ and is expected to deliver a current of 3–5 MA into various loads. To date, the LTD facility has shot into a thick-walled aluminum liner load and a reflex triode load. With a thick-walled aluminum liner of inductance 1.81 nH, a current with peak up to 4.1 MA and rise time (10%–90%) of about 60 ns has been achieved. The current transport efficiency from the insulator stack to the liner load approaches 100% during peak times. The LTD accelerator has been used to drive reflex triode loads generating warm X rays with high energy fluence and large radiation area. It has been demonstrated that this LTD is a promising and high-efficiency prime pulsed power source suitable for use in constructing the next generation of large-scale accelerators with currents of tens of megaamperes.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Hao Wei: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Writing – original draft (equal); Writing – review & editing (equal). Mengtong Qiu: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal). Xiaofeng Jiang: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Zhiguo Wang: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Hongyu Jiang: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Weibo Yao: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Dingguo Lai: Conceptualization (lead); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Validation (equal); Visualization (equal). Hanyu Wu: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Cheng Lou: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Jiachen Wang: Data curation (lead); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Yaorong Yang: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Fengju Sun: Supervision (equal). Mo Li: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal). Liangping Wang: Investigation (equal); Methodology (equal); Validation (equal). Qifu Xu: Investigation (equal); Methodology (equal); Validation (equal). Pengchao Li: Validation (equal). Sen Yang: Validation (equal). Yi Shen: Validation (equal). Zhen Wu: Validation (equal). Jinhua Wang: Validation (equal). Wei Liu: Validation (equal). Hailiang Yang: Funding acquisition (equal); Project administration (equal). Wei Wu: Supervision (equal). Aici Qiu: Supervision (equal).
    Author Contributions
    The data supporting the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    A. A. Kim and M. G. Mazarakis, “The story of the LTD development,” IEEE Trans. Plasma Sci. 48, 749–756 (2020).10.1109/tps.2019.2954210
    [2]
    R. D. McBride, W. A. Stygar, M. E. Cuneo, D. B. Sinars, M. G. Mazarakis et al., “A primer on pulsed power and linear transformer drivers for high energy density physics applications,” IEEE Trans. Plasma Sci. 46, 3928–3967 (2018).10.1109/tps.2018.2870099
    [3]
    M. G. Mazarakis, W. E. Fowler, K. L. LeChien, F. W. Long, M. K. Matzen et al., “High-current linear transformer driver development at Sandia National Laboratories,” IEEE Trans. Plasma Sci. 38, 704–713 (2010).10.1109/tps.2009.2035318
    [4]
    D. B. Sinars, M. A. Sweeney, C. S. Alexander, D. J. Ampleford, T. Ao et al., “Review of pulsed power-driven high energy density physics research on Z at Sandia,” Phys. Plasmas 27, 070501 (2020).10.1063/5.0007476
    [5]
    V. Damideh, J. C. Btaiche, A. Ho, R. B. Spielman, J. M. Lehr et al., “Experimental results of a 330 GW impedance-matched Marx generator,” Sci. Rep. 14, 16889 (2024).10.1038/s41598-024-67774-4
    [6]
    W. A. Stygar, M. E. Cuneo, D. I. Headley, H. C. Ives, R. J. Leeper et al., “Architecture of petawatt-class z-pinch accelerators,” Phys. Rev. Spec. Top.–Accel. Beams 10, 030401 (2007).10.1103/physrevstab.10.030401
    [7]
    [8]
    W. A. Stygar, P. A. Corcoran, H. C. Ives, R. B. Spielman, J. W. Douglas et al., “55-TW magnetically insulated transmission-line system: Design, simulations, and performance,” Phys. Rev. Spec. Top.–Accel. Beams 12, 120401 (2009).10.1103/physrevstab.12.120401
    [9]
    A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, S. N. Volkov, S. S. Kondratiev et al., “Square pulse linear transformer driver,” Phys. Rev. Spec. Top.–Accel. Beams 15, 040401 (2012).10.1103/physrevstab.15.040401
    [10]
    W. A. Stygar, W. E. Fowler, K. R. LeChien, F. W. Long, M. G. Mazarakis et al., “Shaping the output pulse of a linear-transformer-driver module,” Phys. Rev. Spec. Top.–Accel. Beams 12, 030402 (2009).10.1103/physrevstab.12.030402
    [11]
    P. A. Gourdain, M. B. Adams, M. Evans, H. R. Hasson, R. V. Shapovalov et al., “Current adding transmission lines for compact MA-class linear transformer drivers,” Phys. Rev. Accel. Beams 23, 030401 (2020).10.1103/physrevaccelbeams.23.030401
    [12]
    [13]
    W. A. Stygar, T. J. Awe, J. E. Bailey, N. L. Bennett, E. W. Breden et al., “Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments,” Phys. Rev. Spec. Top.–Accel. Beams 18, 110401 (2015).10.1103/physrevstab.18.110401
    [14]
    R. B. Spielman, D. H. Froula, G. Brent, E. M. Campbell, D. B. Reisman et al., “Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments,” Matter Radiat. Extremes 2, 204 (2017).10.1016/j.mre.2017.05.002
    [15]
    J. J. Leckbee, J. E. Maenchen, D. L. Johnson, S. Portillo, D. M. VanDeValde et al., “Design, simulation, and fault analysis of a 6.5-MV LTD for flash X-ray radiography,” IEEE Trans. Plasma Sci. 34, 1888 (2006).10.1109/tps.2006.879553
    [16]
    Z. Lin, L. Zhenghong, W. Zhen, L. Chuan, L. Mingjia et al., “Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments,” Phys. Rev. Accel. Beams 19, 030401 (2016).10.1103/PhysRevAccelBeams.19.030401
    [17]
    F. Conti, J. C. Valenzuela, V. Fadeev, N. Aybar, D. B. Reisman et al., “MA-class linear transformer driver for Z-pinch research,” Phys. Rev. Accel. Beams 23, 090401 (2020).10.1103/physrevaccelbeams.23.090401
    [18]
    J. R. Woodworth, W. A. Stygar, L. F. Bennett, M. G. Mazarakis, H. D. Anderson et al., “New low inductance gas switches for linear transformer drivers,” Phys. Rev. Spec. Top.–Accel. Beams 13, 080401 (2010).10.1103/physrevstab.13.080401
    [19]
    L. Zhou, M. Ye, J. Lu, S. Meng, F. Ye et al., “Modeling and experimental studies of a multi-gap gas switch for linear transformer drivers,” IEEE Trans. Plasma Sci. 51, 193–198 (2023).10.1109/tps.2022.3227331
    [20]
    T. Maysonnave, F. Bayol, G. Demol, T. d’Almeida, F. Lassalle et al., “Investigation of switch designs for the dynamic load current multiplier scheme on the SPHYNX microsecond linear transformer driver,” IEEE Trans. Plasma Sci. 42, 2974–2980 (2014).10.1109/tps.2014.2313372
    [21]
    [22]
    [23]
    Z. Tu, K. Liu, J. Qiu, and Y. Lei, “A new triggering technology based on inductive transformer for linear transformer driver (LTD) switches,” IEEE Trans. Dielectr. Electr. Insul. 20, 1279–1286 (2013).10.1109/tdei.2013.6571445
    [24]
    J. Yin, P. Liu, H. Wei, F. Sun, and A. Qiu, “Trigger method based on secondary induced overvoltage for linear transformer drivers,” IEEE Trans. Plasma Sci. 41, 1760–1766 (2013).10.1109/tps.2013.2263200
    [25]
    M. Qiu, Y. Hu, W. Wu, W. Hao, F. Sun et al., “Review of the development of intense pulsed radiation simulator and its technology in northwest institute of nuclear technology in the past decade,” Mod. Appl. Phys. 15, 030101 (2024).10.12061/j.issn.2905-6223.2024.030101
    [26]
    J. R. Woodworth, W. E. Fowler, B. S. Stoltzfus, W. A. Stygar, M. E. Sceiford et al., “Compact 810 kA linear transformer driver cavity,” Phys. Rev. Spec. Top.–Accel. Beams 14, 040401 (2011).10.1103/physrevstab.14.040401
    [27]
    J. D. Douglass, B. T. Hutsel, J. J. Leckbee, T. D. Mulville, B. S. Stoltzfus et al., “100 GW linear transformer driver cavity: Design, simulations, and performance,” Phys. Rev. Accel. Beams 21, 120401 (2018).10.1103/physrevaccelbeams.21.120401
    [28]
    A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Visir et al., “Development and tests of fast 1-MA linear transformer driver stages,” Phys. Rev. Spec. Top.–Accel. Beams 12, 050402 (2009).10.1103/physrevstab.12.050402
    [29]
    M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski et al., “High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments,” Phys. Rev. Spec. Top.–Accel. Beams 12, 050401 (2009).10.1103/physrevstab.12.050401
    [30]
    B. J. Sporer, A. P. Shah, G. V. Dowhan, R. V. Shapovalov, D. A. Packard et al., “Multicavity linear transformer driver facility for Z-pinch and high-power microwave research,” Phys. Rev. Accel. Beams 24, 100402 (2021).10.1103/physrevaccelbeams.24.100402
    [31]
    A. P. Shah, B. J. Sporer, G. V. Dowhan, K. W. Elliott, M. Krishnan et al., “Development of a gas-puff Z-pinch for the MAIZE linear transformer driver,” IEEE Trans. Plasma Sci. 52, 4794–4803 (2024).10.1109/tps.2024.3436054
    [32]
    [33]
    [34]
    [35]
    R. Maisonny, M. Ribière, M. Toury, J. M. Plewa, M. Caron et al., “Investigating the performances of a 1 MV high pulsed power linear transformer driver: From beam dynamics to x radiation,” Phys. Rev. Spec. Top.–Accel. Beams 19, 120401 (2016).10.1103/PhysRevAccelBeams.19.120401[
    [36]
    F. Sun, A. Qiu, X. Jiang, Z. Wang, H. Jiang et al., “Twelve-stage linear transformer driver with one terra-watts power on a sharing common cavity shell and internal in-situ triggering method,” Mod. Appl. Phys. 13, 040404 (2022) (in Chinese).10.12061/j.issn.2095-6223.2022.040404
    [37]
    L. Chen, W. Zou, J. Jiang, L. Zhou, B. Wei et al., “First results from a 760-GW linear transformer driver module for Z-pinch research,” Matter Radiat. Extremes 6, 045901 (2021).10.1063/5.0003346
    [38]
    L. Chen, W. Zou, L. Zhou, M. Wang, Y. Liu et al., “Development of a fusion-oriented pulsed power module,” Phys. Rev. Accel. Beams 22, 030401 (2019).10.1103/physrevaccelbeams.22.030401
    [39]
    V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski et al., “Study of the formation, stability, and X-ray emission of the Z-pinch formed during implosion of fiber arrays at the Angara-5-1 facility,” Plasma Phys. Rep. 42, 1024–1036 (2016).10.1134/s1063780x16110015
    [40]
    V. V. Aleksandrov, E. V. Grabovsky, Y. N. Laukhin et al., “Plasma production on current-carrying electrodes of the Angara-5-1 facility,” Plasma Phys. Rep. 48, 101–110 (2022).10.1134/s1063780x22020015
    [41]
    [42]
    H. Jiang, X. Jiang, Z. Wang, F. Sun, H. Wei et al., “5.8-GW discharge brick for linear transformer driver,” IEEE Trans. Plasma Sci. 50, 4718 (2022).10.1109/tps.2022.3214374
    [43]
    B. V. Weber, R. J. Commisso, J. T. Engelbrecht, D. P. Murphy, D. Phipps et al., “Cylindrical reflex triode warm X-ray source,” IEEE Trans. Plasma Sci. 48, 3877–3889 (2020).10.1109/tps.2020.3031860
    [44]
    D. Lai, Q. Xu, M. Qiu, F. Sun, X. Jiang et al., “Characteristics of the cylindrical reflex triode driven by a four-stage linear transformer driver,” Rev. Sci. Instrum. 93, 103302 (2022).10.1063/5.0090637
    [45]
    S. Fan, H. Wei, Z. Gong, H. Wu, W. Yao et al., “Model of a 5-MA linear-transformer-driver accelerator: Transmission-line-circuit method and three-dimensional field-circuit coupling method,” IEEE Trans. Plasma Sci. 50, 4912–4918 (2022).10.1109/tps.2022.3223518
    [46]
    Z. Z. Gong, H. Wei, S. Y. Fan, W. B. Yao, A. Qiu et al., “Model of a 5-MA linear-transformer-driver accelerator: Comparison of MITL performance for bremsstrahlung electron beam diodes and Z-pinch loads,” Laser Part. Beams 2023, e13.10.1155/2023/2021696
    [47]
    Z. Wan, W. Ding, F. Sun, X. Jiang, and Q. Yuan, “Characteristics of the output voltage generated by switch prefire in multistage linear transformer drivers,” IEEE Trans. Plasma Sci. 52, 1398–1405 (2024).10.1109/tps.2024.3396163
    [48]
    J. Wang, W. Ding, and A. Qiu, “Capacitive sensor for fast pulsed voltage monitor in transmission line,” Rev. Sci. Instrum. 90, 035107 (2019).10.1063/1.5050276
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return