| Citation: | Zhang S. T., Wang Qing, Liu D. J., Cheng R. J., Li X. X., Lv S. Y., Huang Z. M., Chen Z. J., Xu Z. Y., Wang Qiang, Liu Z. J., Cao L. H., Zheng C. Y.. Kinetic effects of inverse bremsstrahlung absorption in the low-field limit[J]. Matter and Radiation at Extremes, 2025, 10(6): 067402. doi: 10.1063/5.0271079 |
| [1] |
R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding et al., “direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22, 110501 (2015).10.1063/1.4934714
|
| [2] |
J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).10.1063/1.871025
|
| [3] |
F. Alouani-Bibi, M. M. Shoucri, and J. P. Matte, “Different Fokker–Planck approaches to simulate electron transport in plasmas,” Comput. Phys. Commun. 164, 60–66 (2004).10.1016/j.cpc.2004.06.008
|
| [4] |
H. Zhang, D. Kang, C. Wu, L. Hao, H. Shen et al., “semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion,” Matter Radiat. Extremes 9, 015601 (2024).10.1063/5.0150343
|
| [5] |
C. Chen, T. Gong, Z. Li, L. Hao, Y. Liu et al., “Study of the spatial growth of stimulated brillouin scattering in a gas-filled hohlraum via detecting the driven ion acoustic wave,” Matter Radiat. Extremes 9, 027601 (2024).10.1063/5.0173023
|
| [6] |
Z. Lu, X. Xie, X. Liang, M. Sun, P. Zhu et al., “Effect of laser wavelength on growth of ablative Rayleigh–Taylor instability in inertial confinement fusion,” Matter Radiat. Extremes 10, 027403 (2025).10.1063/5.0235138
|
| [7] | |
| [8] | |
| [9] |
A. B. Langdon, “Nonlinear inverse bremsstrahlung and heated-electron distributions,” Phys. Rev. Lett. 44, 575 (1980).10.1103/physrevlett.44.575
|
| [10] |
R. D. Jones and K. Lee, “Kinetic theory, transport, and hydrodynamics of a high-Z plasma in the presence of an intense laser field,” Phys. Fluids 25, 2307–2323 (1982).10.1063/1.863712
|
| [11] |
J. P. Matte, M. Lamoureux, C. Moller, R. Y. Yin, J. Delettrez et al., “Non-Maxwellian electron distributions and continuum x-ray emission in inverse bremsstrahlung heated plasmas,” Plasma Phys. Controlled Fusion 30, 1665 (1988).10.1088/0741-3335/30/12/004
|
| [12] |
J. M. Liu, J. S. De Groot, J. P. Matte, T. W. Johnston, and R. P. Drake, “Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions,” Phys. Rev. Lett. 72, 2717 (1994).10.1103/physrevlett.72.2717
|
| [13] |
S.-M. Weng, Z.-M. Sheng, and J. Zhang, “Inverse bremsstrahlung absorption with nonlinear effects of high laser intensity and non-maxwellian distribution,” Phys. Rev. E 80, 056406 (2009).10.1103/physreve.80.056406
|
| [14] |
L. Schlessinger and J. Wright, “Inverse-bremsstrahlung absorption rate in an intense laser field,” Phys. Rev. A 20, 1934 (1979).10.1103/physreva.20.1934
|
| [15] |
A. Brantov, W. Rozmus, R. Sydora, C. E. Capjack, V. Y. Bychenkov et al., “Enhanced inverse bremsstrahlung heating rates in a strong laser field,” Phys. Plasmas 10, 3385–3396 (2003).10.1063/1.1586917
|
| [16] |
R. Devriendt and O. Poujade, “Classical molecular dynamic simulations and modeling of inverse bremsstrahlung heating in low Z weakly coupled plasmas,” Phys. Plasmas 29, 073301 (2022).10.1063/5.0091662
|
| [17] |
G. J. Pert, “Inverse bremsstrahlung absorption in large radiation fields during binary collisions-classical theory,” J. Phys. A: Gener. Phys. 5, 506 (1972).10.1088/0305-4470/5/4/007
|
| [18] |
L. Oster, “Emission, absorption, and conductivity of a fully ionized gas at radio frequencies,” Rev. Mod. Phys. 33, 525 (1961).10.1103/revmodphys.33.525
|
| [19] |
J. Dawson and C. Oberman, “high-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Phys. Fluids 5, 517–524 (1962).10.1063/1.1706652
|
| [20] |
T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids 16, 722 (1973).10.1063/1.1694419
|
| [21] |
D. Turnbull, J. Katz, M. Sherlock, A. L. Milder, M. S. Cho et al., “Reconciling calculations and measurements of inverse bremsstrahlung absorption,” Phys. Plasmas 31, 063304 (2024).10.1063/5.0203446
|
| [22] |
D. Turnbull, J. Katz, M. Sherlock, L. Divol, N. R. Shaffer et al., “Inverse bremsstrahlung absorption,” Phys. Rev. Lett. 130, 145103 (2023).10.1103/physrevlett.130.145103
|
| [23] |
M. Sherlock, P. Michel, D. J. Strozzi, L. Divol, E. Kur et al., “Inverse bremsstrahlung absorption rate for super-Gaussian electron distribution functions including plasma screening,” Phys. Rev. E 109, 055201 (2024).10.1103/physreve.109.055201
|
| [24] |
M. Sedaghat, M. Ettehadi-Abari, B. Shokri, and M. Ghorbanalilu, “The effect of external magnetic field on the bremsstrahlung nonlinear absorption mechanism in the interaction of high intensity short laser pulse with collisional underdense plasma,” Phys. Plasmas 22, 033114 (2015).10.1063/1.4916127
|
| [25] |
N. Firouzi Farrashbandi, M. Eslami-Kalantari, and A. Sid, “Inverse bremsstrahlung absorption in magnetized plasmas,” EPL Europhys. Lett. 130(2), 25001 (2020).10.1209/0295-5075/130/25001
|
| [26] |
A. L. Milder, J. Katz, R. Boni, J. P. Palastro, M. Sherlock et al., “Measurements of non-Maxwellian electron distribution functions and their effect on laser heating,” Phys. Rev. Lett. 127, 015001 (2021).10.1103/physrevlett.127.015001
|
| [27] |
E. Fourkal, V. Y. Bychenkov, W. Rozmus, R. Sydora, C. Kirkby et al., “Electron distribution function in laser heated plasmas,” Phys. Plasmas 8, 550–556 (2001).10.1063/1.1334611
|
| [28] |
S. T. Zhang, X. M. Li, D. J. Liu, X. X. Li, R. J. Cheng et al., “Vlasov–Fokker–Planck–Maxwell simulations for plasmas in inertial confinement fusion,” Comput. Phys. Commun. 294, 108932 (2024).10.1016/j.cpc.2023.108932
|
| [29] |
N. David, D. J. Spence, and S. M. Hooker, “Molecular-dynamic calculation of the inverse-bremsstrahlung heating of non-weakly-coupled plasmas,” Phys. Rev. E 70, 056411 (2004).10.1103/physreve.70.056411
|
| [30] |
M. Tzoufras, A. R. Bell, P. A. Norreys, and F. S. Tsung, “A Vlasov–Fokker–Planck code for high energy density physics,” J. Comput. Phys. 230, 6475–6494 (2011).10.1016/j.jcp.2011.04.034
|
| [31] |
A. Sid, “Nonlinear inverse bremsstrahlung absorption in laser-fusion plasma Corona,” Phys. Plasmas 10, 214–219 (2003).10.1063/1.1523395
|
| [32] |
A. S. Richardson, 2019 NRL Plasma Formulary (Naval Research Laboratory, Washington, DC, 2019).
|
| [33] |
D. Turnbull, A. Colaïtis, A. M. Hansen, A. L. Milder, J. P. Palastro et al., “Impact of the Langdon effect on crossed-beam energy transfer,” Nat. Phys. 16, 181–185 (2020).10.1038/s41567-019-0725-z
|