| Citation: | Cao Xiuxia, Yu Yin, He Hongliang, Hu Jianbo, Wu Qiang, Zhu Wenjun, Meng Chuanmin. Optical properties of transparent ceramics under shock compression: Correlation mechanism and design strategies[J]. Matter and Radiation at Extremes, 2025, 10(6): 063601. doi: 10.1063/5.0259332 |
| [1] |
X. Gong, D. N. Polsin, R. Paul, B. J. Henderson, J. H. Eggert et al., “X-ray diffraction of ramp-compressed silicon to 390 GPa,” Phys. Rev. Lett. 130, 076101 (2023).10.1103/physrevlett.130.076101
|
| [2] |
M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane et al., “Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348, 1455–1460 (2015).10.1126/science.aaa7471
|
| [3] |
B. Luo, G. Wang, F. Tan, J. Zhao, C. Liu et al., “Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading,” AIP Adv. 5, 067161 (2015).10.1063/1.4923318
|
| [4] |
R. S. Hixson, B. M. La Lone, M. D. Staska, G. D. Stevens, W. D. Turley et al., “Temperature measurements in cerium shocked from 8.4 to 23.5 GPa,” J. Appl. Phys. 129, 155106 (2021).10.1063/5.0043096
|
| [5] |
M. K. Wallace, J. M. Winey, and Y. M. Gupta, “Shock compression of silver to 300 GPa: Wave profile measurements and melting transition,” Phys. Rev. B 104, 014101 (2021).10.1103/physrevb.104.014101
|
| [6] |
J. Li, Q. Wu, T. Xue, H. Geng, J. Yu et al., “The α-γ-ε triple point and phase boundaries of iron under shock compression,” J. Appl. Phys. 122, 025901 (2017).10.1063/1.4993581
|
| [7] |
B. Gan, J. Li, Q. Wu, G. Jiang, H. Y. Geng et al., “Shock temperatures and melting curve of an Fe–Ni–Cr alloy up to 304 GPa,” J. Appl. Phys. 131, 045901 (2022).10.1063/5.0077531
|
| [8] |
A. Joshi, V. Gandhi, S. Ravindran, and G. Ravichandran, “An investigation of shock-induced phase transition in soda-lime glass,” J. Appl. Phys. 131, 205902 (2022).10.1063/5.0086627
|
| [9] |
T. Chong, Z. P. Tang, F. L. Tan, G. J. Wang, and J. H. Zhao, “Phase transition and dynamics of iron under ramp wave compression,” Acta Mech. Sin. 34, 902–909 (2018).10.1007/s10409-018-0774-z
|
| [10] |
S. J. Tracy, R. F. Smith, J. K. Wicks, D. E. Fratanduono, A. E. Gleason et al., “In situ observation in silicon carbide under shock compression using pulsed x-ray diffraction,” Phys. Rev. B 99, 214106 (2019).10.1103/physrevb.99.214106
|
| [11] |
D. E. Hare, N. C. Holmes, and D. J. Webb, “Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: Images and spectra,” Phys. Rev. B 66, 014108 (2002).10.1103/physrevb.66.014108
|
| [12] |
O. V. Fat’yanov, R. L. Webb, and Y. M. Gupta, “Optical transmission through inelastically deformed shocked sapphire: Stress and crystal orientation effects,” J. Appl. Phys. 97, 123529 (2005).10.1063/1.1937470
|
| [13] |
R. G. McQueen and D. G. Isaak, “Characterizing windows for shock wave radiation studies,” J. Geophys. Res. 95(B13), 21753–21765, (1990).10.1029/jb095ib13p21753
|
| [14] |
C. S. Kwiatkowski and Y. M. Gupta, “Optical measurements to probe inelastic deformation in shocked brittle materials,” in Shock Compression of Condensed Matter–1999, edited by M. D. Furnish., L. C. Chhabildas and R. S. Hixson (Elsevier Science Publishers, New York, 2000), p. 641.
|
| [15] |
R. E. Setchell, “Index of refraction of shock-compressed fused silica and sapphire,” J. Appl. Phys. 50, 8186 (1979).10.1063/1.325959
|
| [16] |
M. D. Furnish, L. C. Chhabildas, and W. D. Reinahart, “Time-resolved particle velocity measurements at impact velocities of 10 km/s,” Int. J. Impact Eng. 23, 261 (1999).10.1016/S0734-743X(99)00078-0
|
| [17] |
B. J. Jensen, D. B. Holtkamp, P. A. Rigg, and D. H. Dolan, “Accuracy limits and window corrections for photon Doppler velocimetry,” J. Appl. Phys. 101, 013523 (2007).10.1063/1.2407290
|
| [18] |
W. G. Zhao, X. M. Zhou, J. B. Li, and X. L. Zeng, “Refractive index of LiF single crystal at high pressure and its window correction,” Chin. J. High Press. Phys. 28, 571 (2014).10.11858/gywlxb.2014.05.010
|
| [19] |
X. Li, Y. Yu, Y. Li, L. Zhang, and J. Weng, “Window corrections of z-cut quartz at 1550 nm under elastic, uniaxial compression up to 10 GPa,” J. Appl. Phys. 109, 103518 (2011).10.1063/1.3581079
|
| [20] |
D. E. Fratanduono, J. H. Eggert, M. C. Akin, R. Chau, and N. C. Holmes, “A novel approach to Hugoniot measurements utilizing transparent crystals,” J. Appl. Phys. 114, 043518 (2013).10.1063/1.4813871
|
| [21] | |
| [22] |
J. W. Huang, Q. C. Liu, X. L. Zeng, X. M. Zhou, and S. N. Luo, “Refractive indices of Gd3Ga5O12 single crystals under shock compression to 100-290 GPa,” J. Appl. Phys. 118, 205902 (2015).10.1063/1.4936229
|
| [23] | |
| [24] |
K. I. Kondo, T. J. Ahrens, and A. Sawaoka, “Shock-induced radiation spectra of fused quartz,” J. Appl. Phys. 54, 4382 (1983).10.1063/1.332676
|
| [25] |
D. E. Hare, D. J. Webb, S. H. Lee, and N. C. Holmes, “Optical extinction of sapphire shock-loaded to 250–260 GPa,” in Shock Compression of Condensed Matter – 2001, edited by M. D. Furnish, N. N. Thadhani and Y. Horie (American Institute of Physics, New York, 2002), p. 1231.
|
| [26] |
X. Zhou, W. J. Nellis, J. Li, J. Li, W. Zhao et al., “Optical emission, shock-induced opacity, temperatures and melting of Gd3Ga5O12 single crystals shock-compressed from 41 to 290 GPa,” J. Appl. Phys. 118, 055903 (2015).10.1063/1.4928081
|
| [27] |
Q. C. Liu, X. M. Zhou, and S. N. Luo, “Optical absorbance of Gd3Ga5O12 single crystals under shock compression to 211 GPa,” J. Appl. Phys. 121, 145901 (2017).10.1063/1.4979634
|
| [28] |
Q. Liu, T. Xue, J. Li, J. Li, and X. Zhou, “Optical absorption spectra of MgO single crystals under shock compression between 50 and 132 GPa,” J. Appl. Phys. 131, 235901 (2022).10.1063/5.0096642
|
| [29] |
K. Katagiri, N. Ozaki, K. Miyanishi, N. Kamimura, Y. Umeda et al., “Optical properties of shock-compressed diamond up to 550 GPa,” Phys. Rev. B 101, 184106 (2020).10.1103/physrevb.101.184106
|
| [30] |
A. Goldstein and A. Krell, “Transparent ceramics at 50: Progress made and further prospects,” J. Am. Ceram. Soc. 99, 3173–3197 (2016).10.1111/jace.14553
|
| [31] |
A. Ikesue, Y. L. Aung, and V. Lupei, Ceramic Lasers (Cambridge University Press, New York City, New York, 2013).
|
| [32] |
A. Gallian, V. V. Fedorov, S. B. Mirov, V. V. Badikov, S. N. Galkin et al., “Hot-pressed ceramic Cr2+:ZnSe gain-switched laser,” Opt. Express 14(24), 11694 (2006).10.1364/oe.14.011694
|
| [33] |
S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov et al., “Progress in Mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898 (2011).10.1364/ome.1.000898
|
| [34] |
C. Hu, Y. Shi, X. Feng, and Y. Pan, “YAG:Ce/(Gd,Y)AG:Ce dual-layered composite structure ceramic phosphors designed for bright white light-emitting diodes with various CCT,” Opt. Express 23(14), 18243 (2015).10.1364/oe.23.018243
|
| [35] |
S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688 (2011).10.1016/j.optmat.2010.06.005
|
| [36] |
H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: A new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).10.1117/12.794941
|
| [37] |
C. Greskovich and S. Duclos, “Ceramic scintillators,” Annu. Rev. Mater. Sci. 27(1), 69 (1997).10.1146/annurev.matsci.27.1.69
|
| [38] |
S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12: Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96(4), 1067 (2013).10.1111/jace.12297
|
| [39] |
S. R. Podowitz, R. M. Gaumé, W. T. Hong, A. Laouar, and R. S. Feigelson, “Fabrication and properties of translucent Srl2 and Eu: Srl2 scintillator ceramics,” IEEE Trans. Nucl. Sci. 57(6), 3827 (2010).10.1109/TNS.2010.2084590
|
| [40] |
R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr, Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24(1–2), 333–340 (2003).10.1016/S0925-3467(03)00146-0
|
| [41] |
P. Li, X. H. Chen, H. N. Zhang, and Q. P. Wang, “Diode-end-pumped passively Q-switched 1319 nm Nd:YAG ceramic laser with a V3+:YAG saturable absorber,” Laser Phys. 21(10), 1708–1712 (2011).10.1134/S1054660X11170117
|
| [42] |
A. Goldstein, P. Loiko, Z. Burshtein, N. Skoptsov, I. Glazunov et al., “Development of saturable absorbers for laser passive Q-switching near 1.5 μm based on transparent ceramic Co2+: MgAl2O4,” J. Am. Ceram. Soc. 99(4), 1324 (2016).10.1111/jace.14102
|
| [43] |
E. Straßburger, “Ballistic testing of transparent armor ceramics,” J. Eur. Ceram. Soc. 29, 267 (2009).10.1016/j.jeurceramsoc.2008.03.049
|
| [44] |
B. Paliwal, K. T. Ramesh, and J. W. McCauley, “Direct observation of the dynamic compressive failure of a transparent polycrystalline ceramic (AlON),” J. Am. Ceram. Soc. 89(7), 2128 (2006).10.1111/j.1551-2916.2006.00965.x
|
| [45] |
T. Sekine, X. Li, T. Kobayashi, Y. Yamashita, P. Patel et al., “Aluminum oxynitride at pressures up to 180 GPa,” J. Appl. Phys. 94, 4803 (2003).10.1063/1.1608476
|
| [46] |
Y. Ashuach, Z. Rosenberg, and E. Dekel, “On the spall strengths and Hugoniot elastic limits of some strong ceramics,” in Shock Compression of Condensed Matter–2007, edited by M. Elert, M. D. Furnish, R. Chau, N. Holmes, and J. Nguyen (American Institute of Physics. New York, 2007), pp. 473–476.
|
| [47] |
M. Sokol, S. Kalabukhov, R. Shneck, E. Zaretsky, and N. Frage, “Effect of grain size on the static and dynamic mechanical properties of magnesium aluminate spinel (MgAl2O4),” J. Eur. Ceram. Soc. 37, 3417 (2017).10.1016/j.jeurceramsoc.2017.04.025
|
| [48] |
M. Sokol, M. Halabi, Y. Mordekovitz, S. Kalabukhov, S. Hayun et al., “An inverse Hall–Petch relation in nanocrystalline MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS),” Scr. Mater. 139, 159 (2017).10.1016/j.scriptamat.2017.06.049
|
| [49] |
W. Jiang, X. Cheng, Z. Xiong, Z. Ma, T. Ali et al., “Static and dynamic mechanical properties of yttrium aluminum garnet (YAG),” Ceram. Int. 45, 12256 (2019).10.1016/j.ceramint.2019.03.136
|
| [50] |
K. Bao, X. F. Zhang, G. J. Wang, J. J. Deng, T. Chong et al., “Damage characteristics of YAG transparent ceramics under different loading conditions,” Def. Technol. 18, 1394 (2022).10.1016/j.dt.2021.06.010
|
| [51] |
X. Cao, T. Li, Y. Yu, X. Li, J. Qi et al., “Dynamic response of YAG polycrystalline and single-crystal transparent ceramics: Experiments and mesoscopic simulations,” J. Am. Ceram. Soc. 105, 6864 (2022).10.1111/jace.18647
|
| [52] |
W. Jiang, X. Cheng, H. Cai, and J. Zhang, “Static and dynamic failure behavior of transparent polycrystalline spinel (MgAl2O4) under compression/shear loading experiments,” Mater. Res. Express 6, 015204 (2018).10.1088/2053-1591/aae4ba
|
| [53] |
K. Bao, X. Zhang, G. Wang, T. Chong, J. Deng et al., “Refractive index of MgAl2O4 transparent ceramic under quasi-isentropic compression loading,” High Pressure Res. 41, 209 (2021).10.1080/08957959.2021.1940999
|
| [54] |
X. Cao, Q. Wu, M. Sokol, J. Qi, Y. Yu et al., “Superior optical transparency of nano-grain magnesium aluminate spinel at high shock pressure,” Appl. Phys. Lett. 124, 054102 (2024).10.1063/5.0181667
|
| [55] |
T. Li, X. Cao, Q. Wang, Y. Li, H. He et al., “Numerical modeling of dynamic response and microcracking in shock-loaded polycrystalline transparent ceramic,” J. Appl. Phys. 129, 205103 (2021).10.1063/5.0046248
|
| [56] |
B. Gou, J. Qi, C. Meng, L. Xiong, Y. Yu et al., “Shock impedance adjustment using anion and cation components: Forming γ-Al2O3 to Al(8+x)/3□(1/3−x/3) O4−xNx and Mg1−yAl2+yO4−yNy transparent ceramic windows,” J. Alloys Compd. 870, 159423 (2021).10.1016/j.jallcom.2021.159423
|
| [57] |
R. Zhang, Q. Chen, X. Cao, C. Meng, J. Qi et al., “Designing the shock impedance of ZnxMg1−xAl2O4 spinel to match that of Fe via ab initio calculations,” J. Alloys Compd. 782, 363 (2019).10.1016/j.jallcom.2018.12.177
|
| [58] |
B. J. Jensen, T. M. Hartsfield, D. B. Holtkamp, F. J. Cherne et al., “Examining the high-pressure response and shock melting in cerium using optical pyrometry,” Phys. Rev. B 102, 214105 (2020).10.1103/physrevb.102.214105
|
| [59] |
W. J. Nellis and C. S. Yoo, “Issues concerning shock temperature measurements of iron and other metals,” J. Geophys. Res. 95, 21749, (1990).10.1029/jb095ib13p21749
|
| [60] |
J. Clérouin, Y. Laudernet, and V. Recoules, “Ab initio study of the optical properties of shocked LiF,” Phys. Rev. B 72, 155122 (2005).10.1103/PhysRevB.72.155122
|
| [61] |
J. A. Hawreliak, J. M. Winey, Y. Toyoda, M. Wallace, and Y. M. Gupta, “Shock-induced melting of [100] lithium fluoride: Sound speed and Hugoniot measurements to 230 GPa,” Phys. Rev. B 107, 014104 (2023).10.1103/physrevb.107.014104
|
| [62] |
X. Duan, C. Zhang, Z. Guan, L. Sun, X. Peng et al., “Transparency measurement of lithium fluoride under laser-driven accelerating shock loading,” J. Appl. Phys. 128, 015902 (2020).10.1063/5.0003869
|
| [63] |
M. K. Wallace, J. M. Winey, and Y. M. Gupta, “Sound speed measurements in lithium fluoride single crystals shock compressed to 168 GPa along [100],” J. Appl. Phys. 130, 035901 (2021).10.1063/5.0056659
|
| [64] |
Q. Liu, X. Zhou, X. Zeng, and S. N. Luo, “Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression,” J. Appl. Phys. 117, 045901 (2015).10.1063/1.4906558
|
| [65] |
C. T. Seagle, J. P. Davis, and M. D. Knudson, “Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading,” J. Appl. Phys. 120, 165902 (2016).10.1063/1.4965990
|
| [66] |
Y. M. Gupta, “Effect of crystal orientation on dynamic strength of LiF,” J. Appl. Phys. 48, 5067 (1977).10.1063/1.323582
|
| [67] |
P. A. Rigg, M. D. Knudson, R. J. Scharff, and R. S. Hixson, “Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility,” J. Appl. Phys. 116, 033515 (2014).10.1063/1.4890714
|
| [68] |
J. L. Wise and L. C. Chhabildas, “Laser interferometer measurements of refractive index in shock-compressed materials,” in Shock Waves in Condensed Matter—1985, edited by Y. M. Gupta (Plenum Press, New York, 1986), pp. 441–454.
|
| [69] |
X. M. Li, Y. Y. Yu, L. Zhang, Y. H. Li, S. H. Ye et al., “Elastic-plastic response of shocked 100 LiF and its window correction at 1550 nm wavelength,” Acta Phys. Sin. 61, 156202 (2012) (in Chinese).10.7498/aps.61.156202
|
| [70] |
G. Young, X. Liu, C. Leng, J. Yang, and H. Huang, “Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa,” AIP Adv. 8, 125310 (2018).10.1063/1.5065543
|
| [71] |
B. M. LaLone, O. V. Fat’yanov, J. R. Asay, and Y. M. Gupta, “Velocity correction and refractive index changes for [100] lithium fluoride optical windows under shock compression, recompression, and unloading,” J. Appl. Phys. 103(9), 093505 (2008).10.1063/1.2912500
|
| [72] |
D. E. Fratanduono, T. R. Boehly, M. A. Barrios, D. D. Meyerhofer, J. H. Eggert et al., “Refractive index of lithium fluoride ramp compressed to 800 GPa,” J. Appl. Phys. 109, 123521 (2011).10.1063/1.3599884
|
| [73] |
J. P. Davis, M. D. Knudson, L. Shulenburger, and S. D. Crockett, “Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures,” J. Appl. Phys. 120, 165901 (2016).10.1063/1.4965869
|
| [74] |
L. E. Kirsch, S. J. Ali, D. E. Fratanduono, R. G. Kraus, D. G. Braun et al., “Refractive index of lithium fluoride to 900 gigapascal and implications for dynamic equation of state measurements,” J. Appl. Phys. 125, 175901 (2019).10.1063/1.5091722
|
| [75] |
D. Partouche-sebban, J. L. Pélissier, W. W. Anderson, R. S. Hixson, and D. B. Holtkamp, “Investigation of shock-induced light from sapphire for use in pyrometry studies,” Physica B 364, 1 (2005).10.1016/j.physb.2005.02.014
|
| [76] |
J. F. Lin, O. Degtyareva, C. T. Prewitt, P. Dera, N. Sata et al., “Crystal structure of a high-pressure/high-temperature phase of alumina by in situ x-ray diffraction,” Nat. Mater. 3, 389 (2004).10.1038/nmat1121
|
| [77] |
S. Ono, A. R. Oganov, T. Koyama, and H. Shimizu, “Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle Earth Planet,” Earth Planet Sci. Lett. 246, 326 (2006).10.1016/j.epsl.2006.04.017
|
| [78] |
J. Kato, K. Hirose, H. Ozawa, and Y. Ohishi, “High-pressure experiments on phase transition boundaries between corundum, Rh2O3(II)- and CaIrO3-type structures in Al2O3,” Am. Mineral. 98, 335 (2013).10.2138/am.2013.4133
|
| [79] |
R. E. Setchell, “Refractive index of sapphire at 532 nm under shock compression and release,” J. Appl. Phys. 91, 2833 (2002).10.1063/1.1446219
|
| [80] |
X. Cao, J. Li, J. Li, X. Li, L. Xu et al., “Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa,” J. Appl. Phys. 116, 093516 (2014).10.1063/1.4894854
|
| [81] |
X. Cao, Y. Wang, X. Li, L. Xu, L. Liu et al., “Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa,” J. Appl. Phys. 121, 115903 (2017).10.1063/1.4978746
|
| [82] |
G. A. Lyzenga, T. J. Ahrens, and A. C. Mitchell, “Shock temperatures of SiO2 and their geophysical implications,” J. Geophys. Res. 88, 2431, (1983).10.1029/jb088ib03p02431
|
| [83] |
G. A. Lyzenga and T. J. Ahrens, “Shock temperature measurements in Mg2SiO4 and SiO2 at high pressures,” Geophys. Res. Lett. 7, 141, (1980).10.1029/gl007i002p00141
|
| [84] |
M. D. Knudson and M. P. Desjarlais, “Shock compression of quartz to 1.6 TPa: Redefining a pressure standard,” Phys. Rev. Lett. 103, 225501 (2009).10.1103/physrevlett.103.225501
|
| [85] |
B. J. Henderson, M. C. Marshall, T. R. Boehly, R. Paul, C. A. McCoy et al., “Shock-compressed silicon: Hugoniot and sound speed up to 2100 GPa,” Phys. Rev. B 103, 094115 (2021).10.1103/physrevb.103.094115
|
| [86] |
K. Jin, X. Li, Q. Wu, H. Geng, L. Cai et al., “The pressure-volume-temperature equation of state of MgO derived from shock Hugoniot data and its application as a pressure scale,” J. Appl. Phys. 107, 113518 (2010).10.1063/1.3406140
|
| [87] |
Y. Luo, S. Xiang, J. Li, J. Wu, L. Liu et al., “Equation of state of MgO up to 345 GPa and 8500 K,” Phys. Rev. B 107, 134116 (2023).10.1103/physrevb.107.134116
|
| [88] |
J. K. Wicks, S. Singh, M. Millot, D. E. Fratanduono, F. Coppari et al., “B1-B2 transition in shock-compressed MgO,” Sci. Adv. 10, eadk0306 (2024).10.1126/sciadv.adk0306
|
| [89] |
T. Mashimo, R. Chau, Y. Zhang, T. Kobayoshi, T. Sekine et al., “Transition to a virtually incompressible oxide phase at a shock pressure of 120 GPa (1.2 Mbar): Gd3Ga5O12,” Phys. Rev. Lett. 96, 105504 (2006).10.1103/physrevlett.96.105504
|
| [90] |
X. Zhou, J. Li, W. J. Nellis, X. Wang, J. Li et al., “Pressure-dependent Hugoniot elastic limit of Gd2Ga5O12 single crystals,” J. Appl. Phys. 109, 083536 (2011).10.1063/1.3575330
|
| [91] |
R. S. McWilliams, J. H. Eggert, D. G. Hicks, D. K. Bradley, P. M. Celliers et al., “Strength effects in diamond under shock compression from 0.1 to 1 TPa,” Phys. Rev. B 81, 014111 (2010).10.1103/physrevb.81.014111
|
| [92] |
D. K. Bradley, J. H. Eggert, D. G. Hicks, P. M. Celliers, S. J. Moon et al., “Shock compressing diamond to a conducting fluid,” Phys. Rev. Lett. 93(19), 195506 (2004).10.1103/physrevlett.93.195506
|
| [93] |
A. Lazicki, D. McGonegle, J. R. Rygg, D. G. Braun, D. C. Swift et al., “Metastability of diamond ramp-compressed to 2 terapascals,” Nature 589, 532 (2021).10.1038/s41586-020-03140-4
|
| [94] |
Y. Li, X. M. Zhou, C. L. Liu, and S. N. Luo, “Refractive indices of CaF2 single crystals under elastic shock loading,” J. Appl. Phys. 122, 045901 (2017).10.1063/1.4996097
|
| [95] |
Y. Li, X. M. Zhou, Y. Cai, C. L. Liu, and S. N. Luo, “Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression,” J. Appl. Phys. 123, 165901 (2018).10.1063/1.5023064
|
| [96] | |
| [97] |
Y. Kodera, C. L. Hardin, and J. E. Garay, “Transmitting, emitting and controlling light: Processing of transparent ceramics using current-activated pressure-assisted densification,” Scr. Mater. 69, 149 (2013).10.1016/j.scriptamat.2013.02.013
|
| [98] |
H. Furuse, N. Horiuchi, and B.-N. Kim, “Transparent non-cubic laser ceramics with fine microstructure,” Sci. Rep. 9, 10300 (2019).10.1038/s41598-019-46616-8
|
| [99] |
D. C. Harris, L. R. Cambrea, L. F. Johnson, R. T. Seaver, M. Baronowski et al., “Properties of an infrared-transparent MgO: Y2O3 nanocomposite,” J. Am. Ceram. Soc. 96(12), 3828 (2013).10.1111/jace.12589
|
| [100] |
J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-stabilized zirconia ceramics: Influence of scattering caused by birefringence,” J. Am. Ceram. Soc. 94(6), 1850 (2011).10.1111/j.1551-2916.2010.04322.x
|
| [101] |
Y. Wu, “Nanostructured transparent ceramics with an anisotropic crystalline structure,” Opt. Mater. Express 4(10), 2026 (2014).10.1364/ome.4.002026
|
| [102] |
K. Lu, L. Lu, and S. Suresh, “Strengthening materials by engineering coherent internal boundaries at the nanoscale,” Science 324, 349 (2009).10.1126/science.1159610
|
| [103] |
J. Wackerle, “Shock-wave compression of quartz,” J. Appl. Phys. 33, 922 (1962).10.1063/1.1777192
|
| [104] | |
| [105] |
B. J. Jensen, G. T. Gray, and R. S. Hixson, “Direct measurements of the α-ε transition stress and kinetics for shocked iron,” J. Appl. Phys. 105, 103502 (2009).10.1063/1.3110188
|