| Citation: | Guo Songhao, Zhan Yiqiang, Lü Xujie. High-pressure research on optoelectronic materials: Insights from in situ characterization methods[J]. Matter and Radiation at Extremes, 2025, 10(3): 033802. doi: 10.1063/5.0258375 |
| [1] |
X. Yu, T. J. Marks, and A. Facchetti, “Metal oxides for optoelectronic applications,” Nat. Mater. 15, 383–396 (2016).10.1038/nmat4599
|
| [2] |
O. Ostroverkhova, “Organic optoelectronic materials: Mechanisms and applications,” Chem. Rev. 116, 13279–13412 (2016).10.1021/acs.chemrev.6b00127
|
| [3] |
W. Wu and Z. L. Wang, “Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics,” Nat. Rev. Mater. 1, 16031 (2016).10.1038/natrevmats.2016.31
|
| [4] |
X. Lü, W. Yang, Q. Jia, and H. Xu, “Pressure-induced dramatic changes in organic–inorganic halide perovskites,” Chem. Sci. 8, 6764–6776 (2017).10.1039/c7sc01845b
|
| [5] |
M. Miao, Y. Sun, E. Zurek, and H. Lin, “Chemistry under high pressure,” Nat. Rev. Chem 4, 508–527 (2020).10.1038/s41570-020-0213-0
|
| [6] |
L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
|
| [7] |
Q. Li, L. Zhang, Z. Chen, and Z. Quan, “Metal halide perovskites under compression,” J. Mater. Chem. A 7, 16089–16108 (2019).10.1039/c9ta04930d
|
| [8] |
L. Zhang, K. Wang, Y. Lin, and B. Zou, “Pressure effects on the electronic and optical properties in low-dimensional metal halide perovskites,” J. Phys. Chem. Lett. 11, 4693–4701 (2020).10.1021/acs.jpclett.0c01014
|
| [9] |
F. Bai, K. Bian, X. Huang, Z. Wang, and H. Fan, “Pressure induced nanoparticle phase behavior, property, and applications,” Chem. Rev. 119, 7673–7717 (2019).10.1021/acs.chemrev.9b00023
|
| [10] |
Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan et al., “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
|
| [11] |
L. Wang, B. Liu, H. Li, W. Yang, Y. Ding et al., “Long-range ordered carbon clusters: A crystalline material with amorphous building blocks,” Science 337, 825–828 (2012).10.1126/science.1220522
|
| [12] |
T. Song, Z. Fei, M. Yankowitz, Z. Lin, Q. Jiang et al., “Switching 2D magnetic states via pressure tuning of layer stacking,” Nat. Mater. 18, 1298–1302 (2019).10.1038/s41563-019-0505-2
|
| [13] |
E. Shi, S. Deng, B. Yuan, Y. Gao, Akriti et al., “Extrinsic and dynamic edge states of two-dimensional lead halide perovskites,” ACS Nano 13, 1635–1644 (2019).10.1021/acsnano.8b07631
|
| [14] |
Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng et al., “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).10.1038/s41467-018-06840-8
|
| [15] |
T. Fu, K. Bu, X. Sun, D. Wang, X. Feng et al., “Manipulating peierls distortion in van der Waals NbOX2 maximizes second-harmonic generation,” J. Am. Chem. Soc. 145, 16828–16834 (2023).10.1021/jacs.3c04971
|
| [16] |
Y. Wang, S. Guo, H. Luo, C. Zhou, H. Lin et al., “Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss,” J. Am. Chem. Soc. 142, 16001–16006 (2020).10.1021/jacs.0c07166
|
| [17] |
S. Guo, K. Bu, J. Li, Q. Hu, H. Luo et al., “Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features,” J. Am. Chem. Soc. 143, 2545–2551 (2021).10.1021/jacs.0c11730
|
| [18] |
S. Guo, W. Mihalyi-Koch, Y. Mao, X. Li, K. Bu et al., “Exciton engineering of 2D Ruddlesden–Popper perovskites by synergistically tuning the intra and interlayer structures,” Nat. Commun. 15, 3001 (2024).10.1038/s41467-024-47225-4
|
| [19] |
K. Bu, X. Feng, D. Wang, T. Fu, Y. Ma et al., “Quantifying structural polarization by continuous regulation of lone-pair electron expression in molecular crystals,” J. Am. Chem. Soc. 146, 22469–22475 (2024).10.1021/jacs.4c05927
|
| [20] |
K. Bu, T. Fu, Z. Du, X. Feng, D. Wang et al., “Enhanced second-harmonic generation of van der Waals CuInP2S6 via pressure-regulated cationic displacement,” Chem. Mater. 35, 242–250 (2022).10.1021/acs.chemmater.2c03066
|
| [21] |
A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu et al., “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).10.1038/ncomms4731
|
| [22] |
L. Zhang, C. Liu, L. Wang, C. Liu, K. Wang et al., “Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9,” Angew. Chem., Int. Ed. 57, 11213–11217 (2018).10.1002/anie.201804310
|
| [23] |
K. Bu, Q. Hu, X. Qi, D. Wang, S. Guo et al., “Nested order-disorder framework containing a crystalline matrix with self-filled amorphous-like innards,” Nat. Commun. 13, 4650 (2022).10.1038/s41467-022-32419-5
|
| [24] |
Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang et al., “Long-range topological order in metallic glass,” Science 332, 1404–1406 (2011).10.1126/science.1200324
|
| [25] |
A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55, 65–108 (1983).10.1103/revmodphys.55.65
|
| [26] |
W. A. Bassett, “Diamond anvil cell, 50th birthday,” High Press. Res. 29, 163–186 (2009).10.1080/08957950802597239
|
| [27] |
S. Klotz, J. C. Chervin, P. Munsch, and G. Le Marchand, “Hydrostatic limits of 11 pressure transmitting media,” J. Phys. D: Appl. Phys. 42, 075413 (2009).10.1088/0022-3727/42/7/075413
|
| [28] |
J. Liu, “High pressure x-ray diffraction techniques with synchrotron radiation,” Chin. Phys. B 25, 076106 (2016).10.1088/1674-1056/25/7/076106
|
| [29] |
C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Press. Res. 35, 223–230 (2015).10.1080/08957959.2015.1059835
|
| [30] |
A. C. Larson and R. B. Von Dreele, GSAS: General Structure Analysis System Report LAUR (Los Alamos National Laboratory, Los Alamos, NM, 1986).
|
| [31] |
B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210–213 (2001).10.1107/s0021889801002242
|
| [32] |
X. Lü, Y. Wang, C. C. Stoumpos, Q. Hu, X. Guo et al., “Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization,” Adv. Mater. 28, 8663–8668 (2016).10.1002/adma.201600771
|
| [33] |
J. Ratté, M. F. Macintosh, L. DiLoreto, J. Liu, W. Mihalyi-Koch et al., “Spacer-dependent and pressure-tuned structures and optoelectronic properties of 2D hybrid halide perovskites,” J. Phys. Chem. Lett. 14, 403–412 (2023).10.1021/acs.jpclett.2c03555
|
| [34] |
G. Liu, L. Kong, P. Guo, C. C. Stoumpos, Q. Hu et al., “Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites,” ACS Energy Lett. 2, 2518–2524 (2017).10.1021/acsenergylett.7b00807
|
| [35] |
L. Kong, J. Gong, Q. Hu, F. Capitani, A. Celeste et al., “Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high‐pressure isotope effect,” Adv. Funct. Mater. 31, 2009131 (2020).10.1002/adfm.202009131
|
| [36] |
Y. Mao, S. Guo, X. Huang, K. Bu, Z. Li et al., “Pressure-modulated anomalous organic–inorganic interactions enhance structural distortion and second-harmonic generation in MHyPbBr3 perovskite,” J. Am. Chem. Soc. 145, 23842–23848 (2023).10.1021/jacs.3c09375
|
| [37] |
W. Li, J. Feng, X. Zhang, C. Li, H. Dong et al., “Metallization and superconductivity in the van der Waals compound CuP2Se through pressure-tuning of the interlayer coupling,” J. Am. Chem. Soc. 143, 20343–20355 (2021).10.1021/jacs.1c09735
|
| [38] |
C. M. Mauck and W. A. Tisdale, “Excitons in 2D organic–inorganic halide perovskites,” Trends Chem. 1, 380–393 (2019).10.1016/j.trechm.2019.04.003
|
| [39] |
H. Wang, W. Liu, X. He, P. Zhang, X. Zhang et al., “An excitonic perspective on low-dimensional semiconductors for photocatalysis,” J. Am. Chem. Soc. 142, 14007–14022 (2020).10.1021/jacs.0c06966
|
| [40] |
W. Tao, Y. Zhang, and H. Zhu, “Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications,” Acc. Chem. Res. 55, 345–353 (2022).10.1021/acs.accounts.1c00626
|
| [41] |
S. Huang, Y. Lu, F. Wang, Y. Lei, C. Song et al., “Layer-dependent pressure effect on the electronic structure of 2D black phosphorus,” Phys. Rev. Lett. 127, 186401 (2021).10.1103/physrevlett.127.186401
|
| [42] |
S. Guo, Y. Mao, C. Chen, Y. Zhang, G. Zhao et al., “Pressure distinguishes the dual emissions in pseudohalide 2D ruddlesden–popper perovskite Cs2Pb(SCN)2Br2,” CCS Chem. 6, 1748–1756 (2024).10.31635/ccschem.023.202303436
|
| [43] |
G. Liu, J. Gong, L. Kong, R. D. Schaller, Q. Hu et al., “Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing,” Proc. Natl. Acad. Sci. U. S. A. 115, 8076–8081 (2018).10.1073/pnas.1809167115
|
| [44] |
L. Kong, G. Liu, J. Gong, L. Mao, M. Chen et al., “Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites,” Proc. Natl. Acad. Sci. U. S. A. 117, 16121–16126 (2020).10.1073/pnas.2003561117
|
| [45] |
Y. Fang, L. Zhang, L. Wu, J. Yan, Y. Lin et al., “Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8(BA=CH3(CH2)3NH3+),” Angew. Chem., Int. Ed. 58, 15249–15253 (2019).10.1002/anie.201906311
|
| [46] |
Y. Shi, Z. Ma, D. Zhao, Y. Chen, Y. Cao et al., “Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites,” J. Am. Chem. Soc. 141, 6504–6508 (2019).10.1021/jacs.9b02568
|
| [47] |
B. Xu, Y. Li, P. Hong, P. Zhang, J. Han et al., “Pressure-controlled free exciton and self-trapped exciton emission in quasi-one-dimensional hybrid lead bromides,” Nat. Commun. 15, 7403 (2024).10.1038/s41467-024-51836-2
|
| [48] |
T. Yin, B. Liu, J. Yan, Y. Fang, M. Chen et al., “Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes,” J. Am. Chem. Soc. 141, 1235–1241 (2019).10.1021/jacs.8b07765
|
| [49] |
S. Guo, Y. Li, Y. Mao, W. Tao, K. Bu et al., “Reconfiguring band-edge states and charge distribution of organic semiconductor–incorporated 2D perovskites via pressure gating,” Sci. Adv. 8, eadd1984 (2022).10.1126/sciadv.add1984
|
| [50] |
S. Guo, Y. Zhao, K. Bu, Y. Fu, H. Luo et al., “Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7,” Angew. Chem., Int. Ed. 59, 17533–17539 (2020).10.1002/anie.202001635
|
| [51] |
J. Ruan, Y. Wang, B. Yang, Y. Yang, W. Wang et al., “Pressure-tailored π–π stacking in dimers enhances blue photoluminescence in boron-based organic molecules,” Laser Photonics Rev. 19, 2401537 (2025).10.1002/lpor.202401537
|
| [52] |
Z. Ma, F. Li, D. Zhao, G. Xiao, and B. Zou, “Whether or not emission of Cs4PbBr6 nanocrystals: High-pressure experimental evidence,” CCS Chem. 2, 71–80 (2020).10.31635/ccschem.020.201900086
|
| [53] |
Z. Ma, Q. Li, J. Luo, S. Li, L. Sui et al., “Pressure-driven reverse intersystem crossing: New path toward bright deep-blue emission of lead-free halide double perovskites,” J. Am. Chem. Soc. 143, 15176–15184 (2021).10.1021/jacs.1c06207
|
| [54] |
Q. Sun, C. Zhao, Z. Yin, S. Wang, J. Leng et al., “Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites,” J. Am. Chem. Soc. 143, 19128–19136 (2021).10.1021/jacs.1c08900
|
| [55] |
G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).10.1038/ncomms14558
|
| [56] |
Y. Yin, W. Tian, H. Luo, Y. Gao, and T. Zhao, “Excellent carrier transport property of hybrid perovskites sustained under high pressures,” ACS Energy Lett. 7, 154–161 (2021).10.1021/acsenergylett.1c02359
|
| [57] |
Y. Zhou, H. Zhou, J. Deng, W. Cha, and Z. Cai, “Decisive structural and functional characterization of halide perovskites with synchrotron,” Matter 2, 360–377 (2020).10.1016/j.matt.2019.12.027
|
| [58] |
L. Sui, G. Niu, J. Jiang, Q. Li, Y. Zhang et al., “Pressure engineered optical properties and carrier dynamics of FAPbBr3 nanocrystals encapsulated by siliceous nanosphere,” J. Phys. Chem. C 124, 14390–14399 (2020).10.1021/acs.jpcc.0c03676
|
| [59] |
D. Jiang, X. Jiang, X. Zhang, C. Li, K. Liu et al., “Second-harmonic-generation switching via pressure-suppressed dynamical disorder,” J. Am. Chem. Soc. 146, 23508–23516 (2024).10.1021/jacs.4c07504
|
| [60] |
H. Luo, H. Xuan, D. Wang, Z. Du, Z. Li et al., “Pressure aging: An effective process to liberate the power of high-pressure materials research,” Proc. Natl. Acad. Sci. U. S. A. 121, e2416835121 (2024).10.1073/pnas.2416835121
|
| [61] |
D. Spirito, Y. Asensio, L. E. Hueso, and B. Martín-García, “Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites,” J. Phys. Mater. 5, 034004 (2022).10.1088/2515-7639/ac7977
|
| [62] |
T. Yin, H. Yan, I. Abdelwahab, Y. Lekina, X. Lü et al., “Pressure driven rotational isomerism in 2D hybrid perovskites,” Nat. Commun. 14, 411 (2023).10.1038/s41467-023-36032-y
|
| [63] |
F. Ke, Y. Chen, K. Yin, J. Yan, H. Zhang et al., “Large bandgap of pressurized trilayer graphene,” Proc. Natl. Acad. Sci. U. S. A. 116, 9186–9190 (2019).10.1073/pnas.1820890116
|
| [64] |
Z. Zhao, H. Zhang, H. Yuan, S. Wang, Y. Lin et al., “Pressure induced metallization with absence of structural transition in layered molybdenum diselenide,” Nat. Commun. 6, 7312 (2015).10.1038/ncomms8312
|
| [65] |
F. Ke, J. Yan, R. Matheu, S. Niu, N. R. Wolf et al., “Quasi-one-dimensional metallicity in compressed CsSnI3,” J. Am. Chem. Soc. 144, 23595–23602 (2022).10.1021/jacs.2c10884
|
| [66] |
Z. Li, H. Li, N. Liu, M. Du, X. Jin et al., “Pressure engineering for extending spectral response range and enhancing photoelectric properties of iodine,” Adv. Opt. Mater. 9, 2101163 (2021).10.1002/adom.202101163
|