Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 3
May  2025
Turn off MathJax
Article Contents
Guo Songhao, Zhan Yiqiang, Lü Xujie. High-pressure research on optoelectronic materials: Insights from in situ characterization methods[J]. Matter and Radiation at Extremes, 2025, 10(3): 033802. doi: 10.1063/5.0258375
Citation: Guo Songhao, Zhan Yiqiang, Lü Xujie. High-pressure research on optoelectronic materials: Insights from in situ characterization methods[J]. Matter and Radiation at Extremes, 2025, 10(3): 033802. doi: 10.1063/5.0258375

High-pressure research on optoelectronic materials: Insights from in situ characterization methods

doi: 10.1063/5.0258375
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: sh_guo@fudan.edu.cn and xujie.lu@hpstar.ac.cn
  • Received Date: 2025-01-16
  • Accepted Date: 2025-04-11
  • Available Online: 2025-11-28
  • Publish Date: 2025-05-01
  • High-pressure research has emerged as a pivotal approach for advancing our understanding and development of optoelectronic materials, which are vital for a wide range of applications, including photovoltaics, light-emitting devices, and photodetectors. This review highlights various in situ characterization methods employed in high-pressure research to investigate the optical, electronic, and structural properties of optoelectronic materials. We explore the advances that have been made in techniques such as X-ray diffraction, absorption spectroscopy, nonlinear optics, photoluminescence spectroscopy, Raman spectroscopy, and photoresponse measurement, emphasizing how these methods have enhanced the elucidation of structural transitions, bandgap modulation, performance optimization, and carrier dynamics engineering. These insights underscore the pivotal role of high-pressure techniques in optimizing and tailoring optoelectronic materials for future applications.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Songhao Guo: Writing – original draft (equal); Writing – review & editing (equal). Yiqiang Zhan: Writing – review & editing (equal). Xujie Lü: Supervision (equal).
    Author Contributions
    Data sharing is not applicable to this article as no new data were created or analyzed in this study.
  • loading
  • [1]
    X. Yu, T. J. Marks, and A. Facchetti, “Metal oxides for optoelectronic applications,” Nat. Mater. 15, 383–396 (2016).10.1038/nmat4599
    [2]
    O. Ostroverkhova, “Organic optoelectronic materials: Mechanisms and applications,” Chem. Rev. 116, 13279–13412 (2016).10.1021/acs.chemrev.6b00127
    [3]
    W. Wu and Z. L. Wang, “Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics,” Nat. Rev. Mater. 1, 16031 (2016).10.1038/natrevmats.2016.31
    [4]
    X. Lü, W. Yang, Q. Jia, and H. Xu, “Pressure-induced dramatic changes in organic–inorganic halide perovskites,” Chem. Sci. 8, 6764–6776 (2017).10.1039/c7sc01845b
    [5]
    M. Miao, Y. Sun, E. Zurek, and H. Lin, “Chemistry under high pressure,” Nat. Rev. Chem 4, 508–527 (2020).10.1038/s41570-020-0213-0
    [6]
    L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2, 17005 (2017).10.1038/natrevmats.2017.5
    [7]
    Q. Li, L. Zhang, Z. Chen, and Z. Quan, “Metal halide perovskites under compression,” J. Mater. Chem. A 7, 16089–16108 (2019).10.1039/c9ta04930d
    [8]
    L. Zhang, K. Wang, Y. Lin, and B. Zou, “Pressure effects on the electronic and optical properties in low-dimensional metal halide perovskites,” J. Phys. Chem. Lett. 11, 4693–4701 (2020).10.1021/acs.jpclett.0c01014
    [9]
    F. Bai, K. Bian, X. Huang, Z. Wang, and H. Fan, “Pressure induced nanoparticle phase behavior, property, and applications,” Chem. Rev. 119, 7673–7717 (2019).10.1021/acs.chemrev.9b00023
    [10]
    Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan et al., “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
    [11]
    L. Wang, B. Liu, H. Li, W. Yang, Y. Ding et al., “Long-range ordered carbon clusters: A crystalline material with amorphous building blocks,” Science 337, 825–828 (2012).10.1126/science.1220522
    [12]
    T. Song, Z. Fei, M. Yankowitz, Z. Lin, Q. Jiang et al., “Switching 2D magnetic states via pressure tuning of layer stacking,” Nat. Mater. 18, 1298–1302 (2019).10.1038/s41563-019-0505-2
    [13]
    E. Shi, S. Deng, B. Yuan, Y. Gao, Akriti et al., “Extrinsic and dynamic edge states of two-dimensional lead halide perovskites,” ACS Nano 13, 1635–1644 (2019).10.1021/acsnano.8b07631
    [14]
    Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng et al., “Pressure-induced emission of cesium lead halide perovskite nanocrystals,” Nat. Commun. 9, 4506 (2018).10.1038/s41467-018-06840-8
    [15]
    T. Fu, K. Bu, X. Sun, D. Wang, X. Feng et al., “Manipulating peierls distortion in van der Waals NbOX2 maximizes second-harmonic generation,” J. Am. Chem. Soc. 145, 16828–16834 (2023).10.1021/jacs.3c04971
    [16]
    Y. Wang, S. Guo, H. Luo, C. Zhou, H. Lin et al., “Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss,” J. Am. Chem. Soc. 142, 16001–16006 (2020).10.1021/jacs.0c07166
    [17]
    S. Guo, K. Bu, J. Li, Q. Hu, H. Luo et al., “Enhanced photocurrent of all-inorganic two-dimensional perovskite Cs2PbI2Cl2 via pressure-regulated excitonic features,” J. Am. Chem. Soc. 143, 2545–2551 (2021).10.1021/jacs.0c11730
    [18]
    S. Guo, W. Mihalyi-Koch, Y. Mao, X. Li, K. Bu et al., “Exciton engineering of 2D Ruddlesden–Popper perovskites by synergistically tuning the intra and interlayer structures,” Nat. Commun. 15, 3001 (2024).10.1038/s41467-024-47225-4
    [19]
    K. Bu, X. Feng, D. Wang, T. Fu, Y. Ma et al., “Quantifying structural polarization by continuous regulation of lone-pair electron expression in molecular crystals,” J. Am. Chem. Soc. 146, 22469–22475 (2024).10.1021/jacs.4c05927
    [20]
    K. Bu, T. Fu, Z. Du, X. Feng, D. Wang et al., “Enhanced second-harmonic generation of van der Waals CuInP2S6 via pressure-regulated cationic displacement,” Chem. Mater. 35, 242–250 (2022).10.1021/acs.chemmater.2c03066
    [21]
    A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu et al., “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).10.1038/ncomms4731
    [22]
    L. Zhang, C. Liu, L. Wang, C. Liu, K. Wang et al., “Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9,” Angew. Chem., Int. Ed. 57, 11213–11217 (2018).10.1002/anie.201804310
    [23]
    K. Bu, Q. Hu, X. Qi, D. Wang, S. Guo et al., “Nested order-disorder framework containing a crystalline matrix with self-filled amorphous-like innards,” Nat. Commun. 13, 4650 (2022).10.1038/s41467-022-32419-5
    [24]
    Q. Zeng, H. Sheng, Y. Ding, L. Wang, W. Yang et al., “Long-range topological order in metallic glass,” Science 332, 1404–1406 (2011).10.1126/science.1200324
    [25]
    A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55, 65–108 (1983).10.1103/revmodphys.55.65
    [26]
    W. A. Bassett, “Diamond anvil cell, 50th birthday,” High Press. Res. 29, 163–186 (2009).10.1080/08957950802597239
    [27]
    S. Klotz, J. C. Chervin, P. Munsch, and G. Le Marchand, “Hydrostatic limits of 11 pressure transmitting media,” J. Phys. D: Appl. Phys. 42, 075413 (2009).10.1088/0022-3727/42/7/075413
    [28]
    J. Liu, “High pressure x-ray diffraction techniques with synchrotron radiation,” Chin. Phys. B 25, 076106 (2016).10.1088/1674-1056/25/7/076106
    [29]
    C. Prescher and V. B. Prakapenka, “DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration,” High Press. Res. 35, 223–230 (2015).10.1080/08957959.2015.1059835
    [30]
    A. C. Larson and R. B. Von Dreele, GSAS: General Structure Analysis System Report LAUR (Los Alamos National Laboratory, Los Alamos, NM, 1986).
    [31]
    B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210–213 (2001).10.1107/s0021889801002242
    [32]
    X. Lü, Y. Wang, C. C. Stoumpos, Q. Hu, X. Guo et al., “Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization,” Adv. Mater. 28, 8663–8668 (2016).10.1002/adma.201600771
    [33]
    J. Ratté, M. F. Macintosh, L. DiLoreto, J. Liu, W. Mihalyi-Koch et al., “Spacer-dependent and pressure-tuned structures and optoelectronic properties of 2D hybrid halide perovskites,” J. Phys. Chem. Lett. 14, 403–412 (2023).10.1021/acs.jpclett.2c03555
    [34]
    G. Liu, L. Kong, P. Guo, C. C. Stoumpos, Q. Hu et al., “Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites,” ACS Energy Lett. 2, 2518–2524 (2017).10.1021/acsenergylett.7b00807
    [35]
    L. Kong, J. Gong, Q. Hu, F. Capitani, A. Celeste et al., “Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high‐pressure isotope effect,” Adv. Funct. Mater. 31, 2009131 (2020).10.1002/adfm.202009131
    [36]
    Y. Mao, S. Guo, X. Huang, K. Bu, Z. Li et al., “Pressure-modulated anomalous organic–inorganic interactions enhance structural distortion and second-harmonic generation in MHyPbBr3 perovskite,” J. Am. Chem. Soc. 145, 23842–23848 (2023).10.1021/jacs.3c09375
    [37]
    W. Li, J. Feng, X. Zhang, C. Li, H. Dong et al., “Metallization and superconductivity in the van der Waals compound CuP2Se through pressure-tuning of the interlayer coupling,” J. Am. Chem. Soc. 143, 20343–20355 (2021).10.1021/jacs.1c09735
    [38]
    C. M. Mauck and W. A. Tisdale, “Excitons in 2D organic–inorganic halide perovskites,” Trends Chem. 1, 380–393 (2019).10.1016/j.trechm.2019.04.003
    [39]
    H. Wang, W. Liu, X. He, P. Zhang, X. Zhang et al., “An excitonic perspective on low-dimensional semiconductors for photocatalysis,” J. Am. Chem. Soc. 142, 14007–14022 (2020).10.1021/jacs.0c06966
    [40]
    W. Tao, Y. Zhang, and H. Zhu, “Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications,” Acc. Chem. Res. 55, 345–353 (2022).10.1021/acs.accounts.1c00626
    [41]
    S. Huang, Y. Lu, F. Wang, Y. Lei, C. Song et al., “Layer-dependent pressure effect on the electronic structure of 2D black phosphorus,” Phys. Rev. Lett. 127, 186401 (2021).10.1103/physrevlett.127.186401
    [42]
    S. Guo, Y. Mao, C. Chen, Y. Zhang, G. Zhao et al., “Pressure distinguishes the dual emissions in pseudohalide 2D ruddlesden–popper perovskite Cs2Pb(SCN)2Br2,” CCS Chem. 6, 1748–1756 (2024).10.31635/ccschem.023.202303436
    [43]
    G. Liu, J. Gong, L. Kong, R. D. Schaller, Q. Hu et al., “Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing,” Proc. Natl. Acad. Sci. U. S. A. 115, 8076–8081 (2018).10.1073/pnas.1809167115
    [44]
    L. Kong, G. Liu, J. Gong, L. Mao, M. Chen et al., “Highly tunable properties in pressure-treated two-dimensional Dion–Jacobson perovskites,” Proc. Natl. Acad. Sci. U. S. A. 117, 16121–16126 (2020).10.1073/pnas.2003561117
    [45]
    Y. Fang, L. Zhang, L. Wu, J. Yan, Y. Lin et al., “Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8(BA=CH3(CH2)3NH3+),” Angew. Chem., Int. Ed. 58, 15249–15253 (2019).10.1002/anie.201906311
    [46]
    Y. Shi, Z. Ma, D. Zhao, Y. Chen, Y. Cao et al., “Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites,” J. Am. Chem. Soc. 141, 6504–6508 (2019).10.1021/jacs.9b02568
    [47]
    B. Xu, Y. Li, P. Hong, P. Zhang, J. Han et al., “Pressure-controlled free exciton and self-trapped exciton emission in quasi-one-dimensional hybrid lead bromides,” Nat. Commun. 15, 7403 (2024).10.1038/s41467-024-51836-2
    [48]
    T. Yin, B. Liu, J. Yan, Y. Fang, M. Chen et al., “Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes,” J. Am. Chem. Soc. 141, 1235–1241 (2019).10.1021/jacs.8b07765
    [49]
    S. Guo, Y. Li, Y. Mao, W. Tao, K. Bu et al., “Reconfiguring band-edge states and charge distribution of organic semiconductor–incorporated 2D perovskites via pressure gating,” Sci. Adv. 8, eadd1984 (2022).10.1126/sciadv.add1984
    [50]
    S. Guo, Y. Zhao, K. Bu, Y. Fu, H. Luo et al., “Pressure-suppressed carrier trapping leads to enhanced emission in two-dimensional perovskite (HA)2(GA)Pb2I7,” Angew. Chem., Int. Ed. 59, 17533–17539 (2020).10.1002/anie.202001635
    [51]
    J. Ruan, Y. Wang, B. Yang, Y. Yang, W. Wang et al., “Pressure-tailored π–π stacking in dimers enhances blue photoluminescence in boron-based organic molecules,” Laser Photonics Rev. 19, 2401537 (2025).10.1002/lpor.202401537
    [52]
    Z. Ma, F. Li, D. Zhao, G. Xiao, and B. Zou, “Whether or not emission of Cs4PbBr6 nanocrystals: High-pressure experimental evidence,” CCS Chem. 2, 71–80 (2020).10.31635/ccschem.020.201900086
    [53]
    Z. Ma, Q. Li, J. Luo, S. Li, L. Sui et al., “Pressure-driven reverse intersystem crossing: New path toward bright deep-blue emission of lead-free halide double perovskites,” J. Am. Chem. Soc. 143, 15176–15184 (2021).10.1021/jacs.1c06207
    [54]
    Q. Sun, C. Zhao, Z. Yin, S. Wang, J. Leng et al., “Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites,” J. Am. Chem. Soc. 143, 19128–19136 (2021).10.1021/jacs.1c08900
    [55]
    G. Xing, B. Wu, X. Wu, M. Li, B. Du et al., “Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence,” Nat. Commun. 8, 14558 (2017).10.1038/ncomms14558
    [56]
    Y. Yin, W. Tian, H. Luo, Y. Gao, and T. Zhao, “Excellent carrier transport property of hybrid perovskites sustained under high pressures,” ACS Energy Lett. 7, 154–161 (2021).10.1021/acsenergylett.1c02359
    [57]
    Y. Zhou, H. Zhou, J. Deng, W. Cha, and Z. Cai, “Decisive structural and functional characterization of halide perovskites with synchrotron,” Matter 2, 360–377 (2020).10.1016/j.matt.2019.12.027
    [58]
    L. Sui, G. Niu, J. Jiang, Q. Li, Y. Zhang et al., “Pressure engineered optical properties and carrier dynamics of FAPbBr3 nanocrystals encapsulated by siliceous nanosphere,” J. Phys. Chem. C 124, 14390–14399 (2020).10.1021/acs.jpcc.0c03676
    [59]
    D. Jiang, X. Jiang, X. Zhang, C. Li, K. Liu et al., “Second-harmonic-generation switching via pressure-suppressed dynamical disorder,” J. Am. Chem. Soc. 146, 23508–23516 (2024).10.1021/jacs.4c07504
    [60]
    H. Luo, H. Xuan, D. Wang, Z. Du, Z. Li et al., “Pressure aging: An effective process to liberate the power of high-pressure materials research,” Proc. Natl. Acad. Sci. U. S. A. 121, e2416835121 (2024).10.1073/pnas.2416835121
    [61]
    D. Spirito, Y. Asensio, L. E. Hueso, and B. Martín-García, “Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites,” J. Phys. Mater. 5, 034004 (2022).10.1088/2515-7639/ac7977
    [62]
    T. Yin, H. Yan, I. Abdelwahab, Y. Lekina, X. Lü et al., “Pressure driven rotational isomerism in 2D hybrid perovskites,” Nat. Commun. 14, 411 (2023).10.1038/s41467-023-36032-y
    [63]
    F. Ke, Y. Chen, K. Yin, J. Yan, H. Zhang et al., “Large bandgap of pressurized trilayer graphene,” Proc. Natl. Acad. Sci. U. S. A. 116, 9186–9190 (2019).10.1073/pnas.1820890116
    [64]
    Z. Zhao, H. Zhang, H. Yuan, S. Wang, Y. Lin et al., “Pressure induced metallization with absence of structural transition in layered molybdenum diselenide,” Nat. Commun. 6, 7312 (2015).10.1038/ncomms8312
    [65]
    F. Ke, J. Yan, R. Matheu, S. Niu, N. R. Wolf et al., “Quasi-one-dimensional metallicity in compressed CsSnI3,” J. Am. Chem. Soc. 144, 23595–23602 (2022).10.1021/jacs.2c10884
    [66]
    Z. Li, H. Li, N. Liu, M. Du, X. Jin et al., “Pressure engineering for extending spectral response range and enhancing photoelectric properties of iodine,” Adv. Opt. Mater. 9, 2101163 (2021).10.1002/adom.202101163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return