Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 3
May  2025
Turn off MathJax
Article Contents
Lacoste C. L. C., Catrix E., Vallières S., Hirsch-Passicos A., Guilberteau T., Lafargue M., Lopez J., Manek-Hönninger I., Fourmaux S., Raffestin D., d’Humières E., Antici P., Bardon M.. Experimental and numerical investigation of the impact of helical coil targets on laser-driven proton and carbon accelerations[J]. Matter and Radiation at Extremes, 2025, 10(3): 037602. doi: 10.1063/5.0257518
Citation: Lacoste C. L. C., Catrix E., Vallières S., Hirsch-Passicos A., Guilberteau T., Lafargue M., Lopez J., Manek-Hönninger I., Fourmaux S., Raffestin D., d’Humières E., Antici P., Bardon M.. Experimental and numerical investigation of the impact of helical coil targets on laser-driven proton and carbon accelerations[J]. Matter and Radiation at Extremes, 2025, 10(3): 037602. doi: 10.1063/5.0257518

Experimental and numerical investigation of the impact of helical coil targets on laser-driven proton and carbon accelerations

doi: 10.1063/5.0257518
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: clement.lacoste@u-bordeaux.fr and clement.lacoste@inrs.ca; b)Current address: Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden 01328, Germany
  • Received Date: 2025-01-10
  • Accepted Date: 2025-03-03
  • Available Online: 2025-11-28
  • Publish Date: 2025-05-01
  • Laser-driven ion acceleration, as produced by interaction of a high-intensity laser with a target, is a growing field of interest. One of the current challenges is to enhance the acceleration process, i.e., to increase the produced ion energy and the ion number and to shape the energy distribution for future applications. In this paper, we investigate the effect of helical coil (HC) targets on the laser–matter interaction process using a 150 TW laser. We demonstrate that HC targets significantly enhance proton acceleration, improving energy bunching and beam focusing and increasing the cutoff energy. For the first time, we extend this analysis to carbon ions, revealing a marked reduction in the number of low-energy carbon ions and the potential for energy bunching and post-acceleration through an optimized HC design. Simulations using the particle-in-cell code SOPHIE confirm the experimental results, providing insights into the current propagation and ion synchronization mechanisms in HCs. Our findings suggest that HC targets can be optimized for multispecies ion acceleration.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    C. L. C. Lacoste: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). E. Catrix: Formal analysis (equal); Investigation (equal); Methodology (equal). S. Vallières: Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Writing – original draft (equal). A. Hirsch-Passicos: Conceptualization (supporting); Formal analysis (supporting); Investigation (supporting). T. Guilberteau: Conceptualization (equal); Methodology (equal). M. Lafargue: Conceptualization (equal); Methodology (equal). J. Lopez: Conceptualization (equal); Supervision (supporting). I. Manek-Hönninger: Conceptualization (supporting); Writing – original draft (equal). S. Fourmaux: Investigation (equal); Methodology (equal); Supervision (equal). D. Raffestin: Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal). E. d’Humières: Conceptualization (equal); Methodology (equal); Supervision (equal). P. Antici: Funding acquisition (equal); Investigation (supporting); Methodology (supporting); Supervision (equal); Validation (equal); Writing – original draft (equal). M. Bardon: Conceptualization (lead); Formal analysis (equal); Funding acquisition (equal); Investigation (lead); Methodology (lead); Supervision (lead); Validation (equal); Writing – original draft (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    M. Dunne, “Laser-driven particle accelerators,” Science 312, 374–376 (2006).10.1126/science.1126051
    [2]
    S. Vallières, M. Salvadori, P. Puyuelo-Valdes, S. Payeur, S. Fourmaux et al., “Thomson parabola and time-of-flight detector cross-calibration methodology on the ALLS 100 TW laser-driven ion acceleration beamline,” Rev. Sci. Instrum. 91, 103303 (2020).10.1063/5.0020257
    [3]
    S. Fourmaux, S. Buffechoux, B. Albertazzi, D. Capelli, A. Lévy et al., “Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses,” Phys. Plasmas 20, 013110 (2013).10.1063/1.4789748
    [4]
    D. Raffestin, L. Lecherbourg, I. Lantuéjoul, B. Vauzour, P. E. Masson-Laborde et al., “Enhanced ion acceleration using the high-energy petawatt PETAL laser,” Matter Radiat. Extremes 6, 569 (2021).10.1063/5.0046679
    [5]
    T. Ziegler, I. Göthel, S. Assenbaum, C. Bernert, F.-E. Brack et al., “Laser-driven high-energy proton beams from cascaded acceleration regimes,” Nat. Phys. 20, 1211 (2024).10.1038/s41567-024-02505-0
    [6]
    T. E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert et al., “Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator,” Phys. Rev. Lett. 92, 204801 (2004).10.1103/physrevlett.92.204801
    [7]
    L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert et al., “Dynamics of electric fields driving the laser acceleration of multi-MeV protons,” Phys. Rev. Lett. 95, 195001 (2005).10.1103/physrevlett.95.195001
    [8]
    P. Patel, A. Mackinnon, M. Key, T. Cowan, M. Foord et al., “Isochoric heating of solid-density matter with an ultrafast proton beam,” Phys. Rev. Lett. 91, 125004 (2003).10.1103/physrevlett.91.125004
    [9]
    P. Antici, J. Fuchs, S. Atzeni, A. Benuzzi, E. Brambrink et al., “Isochoric heating of matter by laser-accelerated high-energy protons,” J. Phys. IV 133, 1077–1079 (2006).10.1051/jp4:2006133218
    [10]
    K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou et al., “Laser-triggered ion acceleration and table top isotope production,” Appl. Phys. Lett. 78, 595–597 (2001).10.1063/1.1343845
    [11]
    K. L. Lancaster, S. Karsch, H. Habara, F. N. Beg, E. L. Clark et al., “Characterization of 7Li(p,n)7Be neutron yields from laser produced ion beams for fast neutron radiography,” Phys. Plasmas 11, 3404–3408 (2004).10.1063/1.1756911
    [12]
    M. Borghesi, A. Schiavi, D. H. Campbell, M. G. Haines, O. Willi et al., “Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies,” Plasma Phys. Control. Fusion 43, A267 (2001).10.1088/0741-3335/43/12a/320
    [13]
    M. Borghesi, L. Romagnani, A. Schiavi, D. H. Campbell, M. G. Haines et al., “Measurement of highly transient electrical charging following high-intensity laser–solid interaction,” Appl. Phys. Lett. 82, 1529–1531 (2003).10.1063/1.1560554
    [14]
    M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown et al., “Fast ignition by intense laser-accelerated proton beams,” Phys. Rev. Lett. 86, 436 (2001).10.1103/physrevlett.86.436
    [15]
    V. Y. Bychenkov, W. Rozmus, A. Maksimchuk, D. Umstadter, and C. E. Capjack, “Fast ignitor concept with light ions,” Plasma Phys. Rep. 27, 1017–1020 (2001).10.1134/1.1426135
    [16]
    M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen et al., “Laser-accelerated particle beams for stress testing of materials,” Nat. Commun. 9, 372 (2018).10.1038/s41467-017-02675-x
    [17]
    M. Barberio, S. Veltri, M. Scisciò, and P. Antici, “Laser-accelerated proton beams as diagnostics for cultural heritage,” Sci. Rep. 7, 40415 (2017).10.1038/srep40415
    [18]
    M. Barberio, M. Scisciò, S. Vallières, S. Veltri, A. Morabito et al., “Laser-generated proton beams for high-precision ultra-fast crystal synthesis,” Sci. Rep. 7, 12522 (2017).10.1038/s41598-017-12782-w
    [19]
    R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth et al., “Intense high-energy proton beams from petawatt-laser irradiation of solids,” Phys. Rev. Lett. 85, 2945 (2000).10.1103/physrevlett.85.2945
    [20]
    S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh et al., “Energetic proton generation in ultra-intense laser–solid interactions,” Phys. Plasmas 8, 542–549 (2001).10.1063/1.1333697
    [21]
    T. Toncian, M. Borghesi, J. Fuchs, E. d’Humieres, P. Antici et al., “Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons,” Science 312, 410–413 (2006).10.1126/science.1124412
    [22]
    A. J. Kemp, S. C. Wilks, and M. Tabak, “Laser-to-proton conversion efficiency studies for proton fast ignition,” Phys. Plasmas 31, 042709 (2024).10.1063/5.0191531
    [23]
    P. Antici, M. Fazi, A. Lombardi, M. Migliorati, L. Palumbo et al., “Numerical study of a linear accelerator using laser-generated proton beams as a source,” J. Appl. Phys. 104, 124901 (2008).10.1063/1.3021160
    [24]
    P. Antici, M. Migliorati, A. Mostacci, L. Picardi, L. Palumbo et al., “A compact post-acceleration scheme for laser-generated protons,” Phys. Plasmas 18, 073103 (2011).10.1063/1.3574361
    [25]
    S. Kar, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann et al., “Guided post-acceleration of laser-driven ions by a miniature modular structure,” Nat. Commun. 7, 10792 (2016).10.1038/ncomms10792
    [26]
    A. Hirsch-Passicos, C. L. C. Lacoste, F. André, Y. Elskens, E. D’Humières et al., “Helical coil design with controlled dispersion for bunching enhancement of protons generated by the target normal sheath acceleration,” Phys. Rev. E 109, 025211 (2024).10.1103/physreve.109.025211
    [27]
    C. L. C. Lacoste, A. Hirsch-Passicos, E. d’Humières, V. T. Tikhonchuk, P. Antici et al., “Theoretical model of current propagation in a helical coil with varying geometry and screen tube,” Matter Radiat. Extremes 9, 067201 (2024).10.1063/5.0221820
    [28]
    M. Bardon, J. G. Moreau, L. Romagnani, C. Rousseaux, M. Ferri et al., “Physics of chromatic focusing, post-acceleration and bunching of laser-driven proton beams in helical coil targets,” Plasma Phys. Control. Fusion 62, 125019 (2020).10.1088/1361-6587/abbe35
    [29]
    P. Martin, H. Ahmed, O. Cavanagh, S. Ferguson, J. S. Green et al., “Multi-parametric characterization of proton bunches above 50 MeV generated by helical coil targets,” High Power Laser Sci. Eng. 12, e88 (2024).10.1017/hpl.2024.64
    [30]
    H. Ahmed, P. Hadjisolomou, K. Naughton, A. Alejo, S. Brauckmann et al., “High energy implementation of coil-target scheme for guided re-acceleration of laser-driven protons,” Sci. Rep. 11, 699 (2021).10.1038/s41598-020-77997-w
    [31]
    P. Hadjisolomou, H. Ahmed, R. Prasad, M. Cerchez, S. Brauckmann et al., “Dynamics of guided post-acceleration of protons in a laser-driven travelling-field accelerator,” Plasma Phys. Contr. Fusion 62, 115023 (2020).10.1088/1361-6587/abb91a
    [32]
    G. S. Kino and S. F. Paik, “Circuit theory of coupled transmission systems,” J. Appl. Phys. 33, 3002–3008 (1962).10.1063/1.1728553
    [33]
    J. R. Pierce, “Traveling-wave tubes,” Bell Syst. Tech. J. 29, 189–250 (1950).10.1002/j.1538-7305.1950.tb00465.x
    [34]
    B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A Mater. Sci. Process. 63, 109 (1996).10.1007/bf01567637
    [35]
    K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3, e149 (2014).10.1038/lsa.2014.30
    [36]
    R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).10.1038/nphoton.2008.47
    [37]
    P. Balage, J. Lopez, G. Bonamis, C. Hönninger, and I. Manek-Hönninger, “Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts,” Int. J. Extrem. Manuf. 5, 015002 (2023).10.1088/2631-7990/acaa14
    [38]
    T. Guilberteau, P. Balage, M. Lafargue, J. Lopez, L. Gemini et al., “Bessel beam femtosecond laser interaction with fused silica before and after chemical etching: Comparison of single pulse, MHz-burst, and GHz-burst,” Micromachines 15, 1313 (2024).10.3390/mi15111313
    [39]
    E. Catrix, F. Boivin, K. Langlois, S. Vallières, C. Y. Boynukara et al., “Stable high repetition-rate laser-driven proton beam production for multidisciplinary applications on the advanced laser light source ion beamline,” Rev. Sci. Instrum. 94, 103003 (2023).10.1063/5.0160783
    [40]
    R. Lelièvre, E. Catrix, S. Vallières, S. Fourmaux, A. Allaoua et al., “High repetition-rate 0.5 Hz broadband neutron source driven by the Advanced Laser Light Source,” Phys. Plasmas 31, 093106 (2024).10.1063/5.0218582.
    [41]
    [42]
    [43]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return