Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
Cristoforetti G., Hume E., Agarwal S., Batani D., Cervenak M., Devi P., Dudzak R., Ettel D., Gajdos P., Glize K., Jelinek S., Juha L., Koester P., Krupka M., Krus M., Larreur H., Malka G., Mancelli D., Masson-Laborde P. E., Morace A., Nicolai Ph., Renner O., Singappuli D., Singh S., Tatarakis M., Yuan X., Wang Y., Woolsey N., Zhang J., Zhao X., Gizzi L. A.. Investigation of ruling parameters on the growth of side and back stimulated Raman scattering in inhomogeneous plasmas at shock ignition laser intensity[J]. Matter and Radiation at Extremes, 2025, 10(4): 045401. doi: 10.1063/5.0257022
Citation: Cristoforetti G., Hume E., Agarwal S., Batani D., Cervenak M., Devi P., Dudzak R., Ettel D., Gajdos P., Glize K., Jelinek S., Juha L., Koester P., Krupka M., Krus M., Larreur H., Malka G., Mancelli D., Masson-Laborde P. E., Morace A., Nicolai Ph., Renner O., Singappuli D., Singh S., Tatarakis M., Yuan X., Wang Y., Woolsey N., Zhang J., Zhao X., Gizzi L. A.. Investigation of ruling parameters on the growth of side and back stimulated Raman scattering in inhomogeneous plasmas at shock ignition laser intensity[J]. Matter and Radiation at Extremes, 2025, 10(4): 045401. doi: 10.1063/5.0257022

Investigation of ruling parameters on the growth of side and back stimulated Raman scattering in inhomogeneous plasmas at shock ignition laser intensity

doi: 10.1063/5.0257022
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: gabriele.cristoforetti@cnr.it
  • Received Date: 2025-01-08
  • Accepted Date: 2025-05-31
  • Available Online: 2025-11-28
  • Publish Date: 2025-07-01
  • Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering (SSRS) instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion. Nonetheless, SSRS remains to date one of the least understood parametric instabilities. Here, we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme (I ∼ 1016 W/cm2), showing significant SSRS growth in the direction perpendicular to the laser polarization. Modification of the focal spot shape and orientation, obtained by using two different random phase plates, and of the density gradient of the plasma, by utilizing exploding foil targets of different thicknesses, clearly reveals a different dependence of backward SRS (BSRS) and SSRS on experimental parameters. While convective BSRS scales with plasma density scale length, as expected by linear theory, the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization. Our analysis therefore demonstrates that under current experimental conditions, with density scale lengths Ln ≈ 60–120 μm and spot sizes FWHM ≈ 40–100 μm, SSRS is limited by laser beam size rather than by the density scale length of the plasma.
  • Conflict of Interest
    The authors have no conflicts to disclose.
    G. Cristoforetti: Conceptualization (lead); Data curation (equal); Formal analysis (equal); Funding acquisition (lead); Investigation (equal); Project administration (lead); Resources (equal); Supervision (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). E. Hume: Data curation (equal); Formal analysis (equal); Investigation (equal); Visualization (equal); Writing – review & editing (equal). S. Agarwal: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal). D. Batani: Funding acquisition (equal); Supervision (equal); Visualization (equal); Writing – review & editing (equal). M. Cervenak: Data curation (equal); Investigation (equal); Resources (equal). P. Devi: Data curation (equal); Investigation (equal). R. Dudzak: Resources (equal). D. Ettel: Investigation (equal); Resources (equal). P. Gajdos: Investigation (equal); Resources (equal). K. Glize: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal); Writing – review & editing (equal). S. Jelinek: Data curation (equal); Formal analysis (equal); Investigation (equal). L. Juha: Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal). P. Koester: Conceptualization (equal); Data curation (equal); Investigation (equal); Supervision (equal); Writing – review & editing (equal). M. Krupka: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal). M. Krus: Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal). H. Larreur: Data curation (equal); Investigation (equal). G. Malka: Data curation (equal); Formal analysis (equal); Investigation (equal); Writing – review & editing (equal). D. Mancelli: Data curation (equal); Investigation (equal). P. E. Masson-Laborde: Formal analysis (equal); Software (equal). A. Morace: Resources (equal); Supervision (equal). Ph. Nicolai: Formal analysis (equal); Software (equal); Writing – review & editing (equal). O. Renner: Data curation (equal); Formal analysis (equal); Investigation (equal); Writing – review & editing (equal). D. Singappuli: Data curation (equal); Investigation (equal). S. Singh: Data curation (equal); Formal analysis (equal); Investigation (equal); Writing – review & editing (equal). M. Tatarakis: Formal analysis (equal); Supervision (equal). X. Yuan: Funding acquisition (equal); Supervision (equal). Y. Wang: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal). N. Woolsey: Formal analysis (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal). J. Zhang: Funding acquisition (equal); Supervision (equal). X. Zhao: Data curation (equal); Formal analysis (equal); Investigation (equal); Resources (equal). L. A. Gizzi: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    C. S. Liu, M. N. Rosenbluth, and R. B. White, “Parametric scattering instabilities in inhomogeneous plasmas,” Phys. Rev. Lett. 31, 697 (1973).10.1103/physrevlett.31.697
    [2]
    B. B. Afeyan and E. A. Williams, “Stimulated Raman sidescattering with the effects of oblique incidence,” Phys. Fluids 28, 3397 (1985).10.1063/1.865340
    [3]
    M. Mostrom and A. Kaufmann, “Trapped modes in acoustic waveguides,” Phys. Rev. Lett. 42, 644 (1979).10.1103/PhysRevLett.42.644
    [4]
    P. Michel, Introduction to Laser Plasma Interactions (Springer, 2013).
    [5]
    R. P. Drake, R. E. Turner, B. F. Lasinski, K. G. Estabrook, E. M. Campbell et al., “Efficient Raman sidescatter and hot-electron production in laser–plasma interaction experiments,” Phys. Rev. Lett. 53, 1739 (1984).10.1103/physrevlett.53.1739
    [6]
    R. P. Drake, R. E. Turner, B. F. Lasinski, E. A. Williams, D. W. Phillion et al., “Studies of Raman scattering from overdense targets irradiated by several kilojoules of 0.53 μm laser light,” Phys. Fluids 31, 3130–3142 (1988).10.1063/1.866970
    [7]
    R. P. Drake, “The scaling of absolutely unstable, stimulated Raman scattering from planar, laser-produced plasmas,” Phys. Fluids B 1, 1082–1088 (1989).10.1063/1.858978
    [8]
    M. J. Rosenberg, A. A. Solodov, J. F. Myatt, W. Seka, P. Michel et al., “Origins and scaling of hot-electron preheat in ignition-scale direct-drive inertial confinement fusion experiments,” Phys. Rev. Lett. 120, 055001 (2018).10.1103/physrevlett.120.055001
    [9]
    M. J. Rosenberg, A. A. Solodov, W. Seka, R. K. Follett, J. F. Myatt et al., “Stimulated Raman scattering mechanisms and scaling behavior in planar direct-drive experiments at the National Ignition Facility,” Phys. Plasmas 27, 042705 (2020).10.1063/1.5139226
    [10]
    P. Michel, M. J. Rosenberg, W. Seka, A. A. Solodov, R. W. Short et al., “Theory and measurements of convective Raman side scatter in inertial confinement fusion experiments,” Phys. Rev. E 99, 033203 (2019).10.1103/physreve.99.033203
    [11]
    S. Hironaka, J. Sivajeyan, J. Wang, M. J. Rosenberg, A. Solodov et al., “Identification of stimulated Raman side scattering in near-spherical coronal plasmas on OMEGA EP,” Phys. Plasmas 30, 022708 (2023).10.1063/5.0134000
    [12]
    K. Glize, X. Zhao, Y. H. Zhang, C. W. Lian, S. Tan et al., “Measurement of stimulated Raman side-scattering predominance in directly driven experiment,” Phys. Plasmas 30, 122706 (2023).10.1063/5.0180607
    [13]
    X. Zhao, X. H. Yuan, J. Zheng, Y. F. Dong, K. Glize et al., “An angular-resolved scattered-light diagnostic for laser-plasma instability studies,” Rev. Sci. Instrum. 93, 053505 (2022).10.1063/5.0090841
    [14]
    Y. Zhang, Z. Zhang, X. Yuan, K. Glize, X. Zhao et al., “Efficient energy transport throughout conical implosions,” Phys. Rev. E 109, 035205 (2024).10.1103/physreve.109.035205
    [15]
    X. Zhao, X. H. Yuan, Y. F. Dong, K. Glize, Y. H. Zhang et al., “Measurements of laser-plasma instabilities in double-cone ignition experiments relevant to the direct-drive conditions at Shenguang-II Upgrade laser facility,” Nucl. Fusion 64, 086069 (2024).10.1088/1741-4326/ad5e98
    [16]
    C. Z. Xiao, H. B. Zhuo, Y. Yin, Z. J. Liu, C. Y. Zheng et al., “On the stimulated Raman sidescattering in inhomogeneous plasmas: Revisit of linear theory and three-dimensional particle-in-cell simulations,” Plasma Phys. Controlled Fusion 60, 025020 (2018).10.1088/1361-6587/aa9b41
    [17]
    C. Z. Xiao, Q. Wang, and J. F. Myatt, “k-space theory and convective gains of stimulated Raman side scattering,” Phys. Rev. E 107, 025203 (2023).10.1103/physreve.107.025203
    [18]
    C. Z. Xiao, Q. Wang, and J. F. Myatt, “Evaluating the importance of Raman and Brillouin side scattering at ignition conditions,” Phys. Plasmas 30, 072702 (2023).10.1063/5.0152261
    [19]
    G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi et al., “Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma,” High Power Laser Sci. Eng. 7, e51 (2019).10.1017/hpl.2019.37
    [20]
    L. A. Gizzi, D. Giulietti, A. Giulietti, T. Afshar-Rad, V. Biancalana et al., “Characterization of laser plasmas for interaction studies,” Phys. Rev. E 49, 5628–5643 (1994).10.1103/physreve.49.5628
    [21]
    J. Breil, S. Galera, and P. H. Maire, Comput. Fluids 46, 161 (2011).10.1016/j.compfluid.2010.06.017
    [22]
    E. Lefebvre, S. Bernard, C. Esnault, P. Gauthier, A. Grisollet et al., “Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations,” Nucl. Fusion 59, 032010 (2018).10.1088/1741-4326/aacc9c
    [23]
    G. Cristoforetti, A. Colaïtis, L. Antonelli, S. Atzeni, F. Baffigi et al., Europhys. Lett. 117, 35001 (2017).10.1209/0295-5075/117/35001
    [24]
    G. Cristoforetti, L. Antonelli, S. Atzeni, F. Baffigi, F. Barbato et al., “Measurements of parametric instabilities at laser intensities relevant to strong shock generation,” Phys. Plasmas 25, 012702 (2018).10.1063/1.5006021
    [25]
    Q. Wang, C. Z. Xiao, Y. Xie, H. B. Cai, J. Chen et al., “PIC simulations of the competition between backward and forward stimulated Raman side scatter in ignition-scale direct-drive coronal conditions,” Phys. Plasmas 31, 042710 (2024).10.1063/5.0185184
    [26]
    M. N. Rosenbluth, “Parametric instabilities in inhomogeneous media,” Phys. Rev. Lett. 29, 565–567 (1972).10.1103/physrevlett.29.565
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return