| Citation: | Triantafyllidis A., Marquès J.-R., Ferri S., Calisti A., Benkadoum Y., De León Y., Dearling A., Ciardi A., Béard J., Lagarrigue J.-M., Ozaki N., Koenig M., Albertazzi B.. Zeeman splitting observations in laser-produced magnetized blast waves[J]. Matter and Radiation at Extremes, 2025, 10(4): 047603. doi: 10.1063/5.0256859 |
| [1] |
B. T. Draine, “Interstellar shock waves with magnetic precursors,” Astrophys. J. 241, 1021–1038 (1980).10.1086/158416
|
| [2] |
B. T. Draine and C. F. McKee, “Theory of interstellar shocks,” Annu. Rev. Astron. Astrophys. 31, 373–432 (1993).10.1146/annurev.astro.31.1.373
|
| [3] |
D. R. Flower and G. Pineau des Forêts, “C-type shocks in the interstellar medium: Profiles of CH+ and CH absorption lines,” Mon. Not. Roy. Astron. Soc. 297, 1182–1188 (1998).10.1046/j.1365-8711.1998.01574.x
|
| [4] |
J. L. West, S. Safi-Harb, T. Jaffe, R. Kothes, T. L. Landecker et al., “The connection between supernova remnants and the galactic magnetic field: A global radio study of the axisymmetric sample,” Astron. Astrophys. 587, A148 (2016).10.1051/0004-6361/201527001
|
| [5] |
P. Mabey, B. Albertazzi, G. Rigon, J.-R. Marquès, C. A. J. Palmer et al., “Laboratory study of bilateral supernova remnants and continuous MHD shocks,” Astrophys. J. 896, 167 (2020).10.3847/1538-4357/ab92a4
|
| [6] |
A. Triantafyllidis, J.-R. Marquès, Y. Benkadoum, Y. De León, A. Ciardi et al., “Dynamics and energy dissipation of collisional blast waves in a perpendicular magnetic field,” Phys. Plasmas 32, 022102 (2025).10.1063/5.0238064
|
| [7] |
W. Marshall, “The structure of magneto-hydrodynamic shock waves,” Proc. R. Soc. London, Ser. A 233, 367–376 (1955).10.1098/rspa.1955.0272
|
| [8] |
F. V. Coroniti, “Dissipation discontinuities in hydromagnetic shock waves,” J. Plasma Phys. 4, 265–282 (1970).10.1017/s0022377800004992
|
| [9] |
J. A. Stamper, K. Papadopoulos, R. N. Sudan, S. O. Dean, E. A. McLean et al., “Spontaneous magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 26, 1012 (1971).10.1103/physrevlett.26.1012
|
| [10] |
L. Lancia, B. Albertazzi, C. Boniface, A. Grisollet, R. Riquier et al., “Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction,” Phys. Rev. Lett. 113, 235001 (2014).10.1103/physrevlett.113.235001
|
| [11] |
S. A. Slutz and R. A. Vesey, “High-gain magnetized inertial fusion,” Phys. Rev. Lett. 108, 025003 (2012).10.1103/physrevlett.108.025003
|
| [12] |
S. A. Slutz, W. A. Stygar, M. R. Gomez, K. J. Peterson, A. B. Sefkow et al., “Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators,” Phys. Plasmas 23, 022702 (2016).10.1063/1.4941100
|
| [13] | |
| [14] |
S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, 1 (Elsevier, 1965), p. 205.
|
| [15] |
E. M. Epperlein and M. G. Haines, “Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation,” Phys. Fluids 29, 1029–1041 (1986).10.1063/1.865901
|
| [16] |
D. Froula, J. Ross, B. Pollock, P. Davis, A. James et al., “Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering,” Phys. Rev. Lett. 98, 135001 (2007).10.1103/physrevlett.98.135001
|
| [17] |
B. Albertazzi, J. Béard, A. Ciardi, T. Vinci, J. Albrecht et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551
|
| [18] |
E. T. Everson, P. Pribyl, C. G. Constantin, A. Zylstra, D. Schaeffer et al., “Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas,” Rev. Sci. Instrum. 80, 113505 (2009).10.1063/1.3246785
|
| [19] |
J. L. Peebles, J. R. Davies, D. H. Barnak, F. Garcia-Rubio, P. V. Heuer et al., “An assessment of generating quasi-static magnetic fields using laser-driven ‘capacitor’ coils,” Phys. Plasmas 29, 080501 (2022).10.1063/5.0096784
|
| [20] |
M. Borghesi, A. J. MacKinnon, A. R. Bell, R. Gaillard, and O. Willi, “Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse,” Phys. Rev. Lett. 81, 112 (1998).10.1103/physrevlett.81.112
|
| [21] |
M. Khan, C. Das, B. Chakraborty, T. Desai, H. C. Pant et al., “Self-generated magnetic field and faraday rotation in a laser-produced plasma,” Phys. Rev. E 58, 925 (1998).10.1103/physreve.58.925
|
| [22] |
D. Vojna, O. Slezák, A. Lucianetti, and T. Mocek, “Verdet constant of magneto-active materials developed for high-power faraday devices,” Appl. Sci. 9, 3160 (2019).10.3390/app9153160
|
| [23] |
B. Albertazzi, S. N. Chen, P. Antici, J. Böker, M. Borghesi et al., “Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation,” Phys. Plasmas 22, 123108 (2015).10.1063/1.4936095
|
| [24] |
D. B. Schaeffer, A. F. A. Bott, M. Borghesi, K. A. Flippo, W. Fox et al., “Proton imaging of high-energy-density laboratory plasmas,” Rev. Mod. Phys. 95, 045007 (2023).10.1103/revmodphys.95.045007
|
| [25] |
J. A. Pearcy, G. D. Sutcliffe, T. M. Johnson, B. L. Reichelt, S. G. Dannhoff et al., “Hohlraum fields with monoenergetic proton radiography at omega,” Appl. Opt. 63, A98–A105 (2024).10.1364/ao.506985
|
| [26] |
B. Albertazzi, P. Mabey, Th. Michel, G. Rigon, J.-R. Marquès et al., “Experimental characterization of the interaction zone between counter-propagating Taylor Sedov blast waves,” Phys. Plasmas 27, 022111 (2020).10.1063/1.5137795
|
| [27] |
N. C. Woolsey, A. Asfaw, B. Hammel, C. Keane, C. A. Back et al., “Spectroscopy of compressed high energy density matter,” Phys. Rev. E 53, 6396 (1996).10.1103/physreve.53.6396
|
| [28] |
S. Tessarin, D. Mikitchuk, R. Doron, E. Stambulchik, E. Kroupp et al., “Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes,” Phys. Plasmas 18, 093301 (2011).10.1063/1.3625555
|
| [29] |
E. C. Dutra, J. A. Koch, R. Presura, W. Angermeier, T. Darling et al., “A multi-axial time-resolved spectroscopic technique for magnetic field, electron density, and temperature measurements in dense magnetized plasmas,” in Site-Directed Research and Development (U.S. Department of Energy, 2016), pp. 23–32.
|
| [30] |
B. Zhu, Z. Zhang, C. Liu, D. Yuan, W. Jiang et al., “Observation of Zeeman splitting effect in a laser-driven coil,” Matter Radiat. Extremes 7, 024402 (2022).10.1063/5.0060954
|
| [31] |
H. R. Griem, M. Baranger, A. C. Kolb, and G. Oertel, “Stark broadening of neutral helium lines in a plasma,” Phys. Rev. 125, 177 (1962).10.1103/physrev.125.177
|
| [32] |
G. Pérez-Callejo, C. Vlachos, C. A. Walsh, R. Florido, M. Bailly-Grandvaux et al., “Cylindrical implosion platform for the study of highly magnetized plasmas at laser megajoule,” Phys. Rev. E 106, 035206 (2022).10.1103/physreve.106.035206
|
| [33] |
S. Ferri, O. Peyrusse, and A. Calisti, “Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields,” Matter Radiat. Extremes 7, 015901 (2022).10.1063/5.0058552
|
| [34] |
P. Zeeman and M. Bôcher, “The effect of magnetisation on the nature of light emitted by a substance,” Nature 55(1424), 347 (1897).10.1038/055347a0
|
| [35] |
J. A. Marozas, “Fourier transform–based continuous phase-plate design technique: A high-pass phase-plate design as an application for omega and the national ignition facility,” J. Opt. Soc. Am. A 24, 74–83 (2007).10.1364/josaa.24.000074
|
| [36] |
I. H. Hutchinson, “Principles of plasma diagnostics: Second edition,” Plasma Phys. Controlled Fusion 44, 2603 (2002).10.1088/0741-3335/44/12/701
|
| [37] |
J. E. Miller, T. R. Boehly, A. Melchior, D. D. Meyerhofer, P. M. Celliers et al., “Streaked optical pyrometer system for laser-driven shock-wave experiments on omega,” Rev. Sci. Instrum. 78, 034903 (2007).10.1063/1.2712189
|
| [38] |
I. Geoffrey Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London, Ser. A 201, 159 (1950).10.1098/rspa.1950.0049
|
| [39] |
L. Ivanovich Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech. 10, 241–250 (1946).
|
| [40] |
R. A. Treumann, “Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks,” Astron. Astrophys. Rev. 17, 409–535 (2009).10.1007/s00159-009-0024-2
|
| [41] |
S. Mar, J. A. Aparicio, M. I. d. l. Rosa, J. A. d. Val, M. A. Gigosos et al., “Measurement of Stark broadening and shift of visible N II lines,” J. Phys. B: At., Mol. Opt. Phys. 33, 1169 (2000).10.1088/0953-4075/33/6/304
|
| [42] |
A. Kramida, Yu. Ralchenko, and J. Reader, NIST Atomic Spectra Database (Ver. 5.10) (National Institute of Standards and Technology, Gaithersburg, MD, 2022).
|
| [43] |
M. S. Dimitrijević and N. Konjević, “Stark widths of doubly- and triply-ionized atom lines,” J. Quant. Spectrosc. Radiat. Transfer 24, 451–459 (1980).10.1016/0022-4073(80)90014-x
|
| [44] |
H.-K. Chung, M. H. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3–12 (2005).10.1016/j.hedp.2005.07.001
|
| [45] |
C. Vlachos, V. Ospina-Bohórquez, P. W. Bradford, G. Pérez-Callejo, M. Ehret et al., “Laser-driven quasi-static B-fields for magnetized high-energy-density experiments,” Phys. Plasmas 31, 032702 (2024).10.1063/5.0190305
|
| [46] |
M. Bailly-Grandvaux, R. Florido, C. A. Walsh, G. Pérez-Callejo, F. N. Beg et al., “Impact of strong magnetization in cylindrical plasma implosions with applied B-field measured via x-ray emission spectroscopy,” Phys. Rev. Res. 6, L012018 (2024).10.1103/physrevresearch.6.l012018
|