Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 4
Jul.  2025
Turn off MathJax
Article Contents
Liu Yin-Hong, Weng Su-Ming, Sheng Zheng-Ming. Reconnection of magnetic flux ropes driven by two-color Laguerre–Gaussian laser pulses in plasma[J]. Matter and Radiation at Extremes, 2025, 10(4): 047201. doi: 10.1063/5.0256030
Citation: Liu Yin-Hong, Weng Su-Ming, Sheng Zheng-Ming. Reconnection of magnetic flux ropes driven by two-color Laguerre–Gaussian laser pulses in plasma[J]. Matter and Radiation at Extremes, 2025, 10(4): 047201. doi: 10.1063/5.0256030

Reconnection of magnetic flux ropes driven by two-color Laguerre–Gaussian laser pulses in plasma

doi: 10.1063/5.0256030
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wengsuming@sjtu.edu.cn
  • Received Date: 2025-01-02
  • Accepted Date: 2025-04-20
  • Available Online: 2025-11-28
  • Publish Date: 2025-07-01
  • The generation and reconnection of magnetic flux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequencies and opposite topological charges are investigated numerically by particle-in-cell simulations. It is shown that twisted plasma currents and hence magnetic flux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency. More importantly, subsequent reconnection of magnetic flux ropes can occur. Typical signatures of magnetic reconnection, such as magnetic island formation and plasma heating, are identified in the reconnection of magnetic flux ropes. Notably, it is found that a strong axial magnetic field can be generated on the axis, owing to the azimuthal current induced during the reconnection of the ropes. This indicates that in the reconnection of magnetic flux ropes, the energy can be transferred not only from the magnetic field to the plasma but also from the plasma current back to the magnetic field. This work opens a new avenue to the study of magnetic flux ropes, which helps in understanding magnetic topology changes, and resultant magnetic energy dissipation, plasma heating, and particle acceleration found in solar flares, and magnetic confinement fusion devices.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Yin-Hong Liu: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Software (equal); Visualization (equal); Writing – original draft (equal). Su-Ming Weng: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (lead); Resources (equal); Supervision (lead); Validation (equal); Writing – original draft (equal); Writing – review & editing (lead). Zheng-Ming Sheng: Conceptualization (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    J. B. Taylor, “Relaxation and magnetic reconnection in plasmas,” Rev. Mod. Phys. 58, 741 (1986).10.1103/revmodphys.58.741
    [2]
    D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, 2000), pp. 320–353.
    [3]
    M. Yamada, R. Kulsrud, and H. Ji, “Magnetic reconnection,” Rev. Mod. Phys. 82, 603–664 (2010).10.1103/revmodphys.82.603
    [4]
    G. Hornig and K. Schindler, “Magnetic topology and the problem of its invariant definition,” Phys. Plasmas 3, 781–791 (1996).10.1063/1.871778
    [5]
    M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R. M. Kulsrud et al., “Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma,” Nat. Commun. 5, 4774 (2014).10.1038/ncomms5774
    [6]
    M. Yamada, J. Yoo, J. Jara-Almonte, W. Daughton, H. Ji et al., “Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma,” Phys. Plasmas 22, 056501 (2015).10.1063/1.4920960
    [7]
    P. A. Sweet, “14. The neutral point theory of solar flares,” Symp. - Int. Astron. Union 6, 123–134 (1958).10.1017/s0074180900237704
    [8]
    E. N. Parker, “Sweet’s mechanism for merging magnetic fields in conducting fluids,” J. Geophys. Res. 62, 509–520, (1957).10.1029/jz062i004p00509
    [9]
    H. E. Petschek, Magnetic Field Annihilation (NASA Special Publication, 1963), Vol. 50, p. 425.
    [10]
    E. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, 2014), pp. 1–65.
    [11]
    J. W. Dungey, “Interplanetary magnetic field and the auroral zones,” Phys. Rev. Lett. 6, 47–48 (1961).10.1103/physrevlett.6.47
    [12]
    W. J. Hughes, The Magnetopause, Magnetotail, and Magnetic Reconnection (Cambridge University Press, 1995), pp. 227–287.
    [13]
    G. Drenkhahn and H. C. Spruit, “Efficient acceleration and radiation in Poynting flux powered GRB outflows,” Astron. Astrophys. 391, 1141–1153 (2002).10.1051/0004-6361:20020839
    [14]
    D. A. Uzdensky, B. Cerutti, and M. C. Begelman, “Reconnection-powered linear accelerator and gamma-ray flares in the Crab Nebula,” Astrophys. J. 737, L40 (2011).10.1088/2041-8205/737/2/l40
    [15]
    M. M. Romanova and R. V. E. Lovelace, “Magnetic field, reconnection, and particle acceleration in extragalactic jets,” Astron. Astrophys. 262, 26–36 (1992).
    [16]
    Y. Nagayama, K. M. McGuire, M. Bitter, A. Cavallo, E. D. Fredrickson et al., “Analysis of sawtooth oscillations using simultaneous measurement of electron cyclotron emission imaging and x-ray tomography on TFTR,” Phys. Rev. Lett. 67, 3527–3530 (1991).10.1103/physrevlett.67.3527
    [17]
    M. Yamada, F. M. Levinton, N. Pomphrey, R. Budny, J. Manickam et al., “Investigation of magnetic reconnection during a sawtooth crash in a high-temperature tokamak plasma,” Phys. Plasmas 1, 3269–3276 (1994).10.1063/1.870479
    [18]
    C. T. Russell, “Physics of magnetic flux ropes,” Eos 70, 684 (1989).10.1029/89eo00206
    [19]
    J. Chen, R. A. Howard, G. E. Brueckner, R. Santoro, J. Krall et al., “Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13,” Astrophys. J. 490, L191–L194 (1997).10.1086/311029.
    [20]
    W. Manchester, T. Gombosi, D. DeZeeuw, and Y. Fan, “Eruption of a buoyantly emerging magnetic flux rope,” Astrophys. J. 610, 588–596 (2004).10.1086/421516
    [21]
    A. W. Smith, W. Sun, J. A. Slavin, and I. J. Rae, “Ion-scale magnetic flux ropes and loops in earth’s magnetotail: An automated, comprehensive survey of MMS data between 2017 and 2022,” J. Geophys. Res.: Space Phys. 129, e2023JA032231, (2024).10.1029/2023ja032231
    [22]
    B. Filippov, O. Martsenyuk, A. K. Srivastava, and W. Uddin, “Solar magnetic flux ropes,” J. Astrophys. Astron. 36, 157–184 (2015).10.1007/s12036-015-9321-5
    [23]
    X. Cheng, Y. Guo, and M. Ding, “Origin and structures of solar eruptions I: Magnetic flux rope,” Sci. China Earth Sci. 60, 1383–1407 (2017).10.1007/s11430-017-9074-6
    [24]
    W. Wang, R. Liu, Y. Wang, Q. Hu, C. Shen et al., “Buildup of a highly twisted magnetic flux rope during a solar eruption,” Nat. Commun. 8, 1330 (2017).10.1038/s41467-017-01207-x
    [25]
    Z. Zhong, Y. Guo, and M. D. Ding, “The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions,” Nat. Commun. 12, 2734 (2021).10.1038/s41467-021-23037-8
    [26]
    R. G. Watt and R. A. Nebel, “Sawteeth, magnetic disturbances, and magnetic flux regeneration in the reversed-field pinch,” Phys. Fluids 26, 1168 (1983).10.1063/1.864279
    [27]
    W. Gekelman, J. E. Maggs, and H. Pfister, “Experiments on the interaction of current channels in a laboratory plasma: Relaxation to the force-free state,” IEEE Trans. Plasma Sci. 20, 614–621 (1992).10.1109/27.199501
    [28]
    H. A. B. Bodin, “The reversed field pinch,” Nucl. Fusion 30, 1717 (1990).10.1088/0029-5515/30/9/005
    [29]
    R. L. Fermo, M. Opher, and J. Drake, “Magnetic reconnection in the interior of interplanetary coronal mass ejections,” Phys. Rev. Lett. 113, 031101 (2014).10.1103/physrevlett.113.031101
    [30]
    W. Gekelman, B. Van Compernolle, T. DeHaas, and S. Vincena, “Chaos in magnetic flux ropes,” Plasma Phys. Control. Fusion 56, 064002 (2014).10.1088/0741-3335/56/6/064002
    [31]
    H. Takabe, “Astrophysics with intense and ultra-intense lasers’laser astrophysics,” Prog. Theor. Phys. Suppl. 143, 202–265 (2001).10.1143/ptps.143.202
    [32]
    B. Remington, R. P. Drake, and R. Dmitri, “Experimental astrophysics with high power lasers and Z-pinches,” Rev. Mod. Phys. 78, 755–807 (2006).10.1103/RevModPhys.78.755
    [33]
    C. K. Li, F. H. Séguin, J. A. Frenje, R. D. Petrasso, P. A. Amendt et al., “Observations of electromagnetic fields and plasma flow in hohlraums with proton radiography,” Phys. Rev. Lett. 102, 205001 (2009).10.1103/physrevlett.102.205001
    [34]
    Y. J. Gu, O. Klimo, D. Kumar, Y. Liu, S. K. Singh et al., “Fast magnetic-field annihilation in the relativistic collisionless regime driven by two ultrashort high-intensity laser pulses,” Phys. Rev. E 93, 013203 (2016).10.1103/physreve.93.013203
    [35]
    Y. J. Gu, F. Pegoraro, P. V. Sasorov, D. Golovin, A. Yogo et al., “Electromagnetic burst generation during annihilation of magnetic field in relativistic laser-plasma interaction,” Sci. Rep. 9, 19462 (2019).10.1038/s41598-019-55976-0
    [36]
    P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi et al., “Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions,” Phys. Rev. Lett. 97, 255001 (2006).10.1103/physrevlett.97.255001
    [37]
    C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso et al., “Observation of megagaussfield topology changes due to magnetic reconnection in laser-produced plasmas,” Phys. Rev. Lett. 99, 055001 (2007).10.1103/PhysRevLett.99.055001
    [38]
    J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong et al., “Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers,” Nat. Phys. 6, 984–987 (2010).10.1038/nphys1790
    [39]
    L. Yi, B. Shen, A. Pukhov, and T. Fülöp, “Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab,” Nat. Commun. 9, 1601 (2018).10.1038/s41467-018-04065-3
    [40]
    Y. Ping, J. Zhong, X. Wang, G. Zhao, Y. Li et al., “Reconnection rate and multi-scale relativistic magnetic reconnection driven by ultra-intense lasers,” Plasma Phys. Control. Fusion 63, 085012 (2021).10.1088/1361-6587/ac031c
    [41]
    Y. Shi, D. R. Blackman, R. J. Kingham, A. Arefiev et al., “Twisted plasma waves driven by twisted ponderomotive force,” JUSTC 53, 3 (2023).10.52396/justc-2022-0080
    [42]
    Y. Shi, J. Vieira, R. M. G. M. Trines, R. Bingham, B. F. Shen et al., “Magnetic field generation in plasma waves driven by copropagating intense twisted lasers,” Phys. Rev. Lett. 121, 145002 (2018).10.1103/physrevlett.121.145002
    [43]
    J. T. Mendonça, “Kinetic description of electron plasma waves with orbital angular momentum,” Phys. Plasmas 19, 112–113 (2012).10.1063/1.4769030
    [44]
    D. R. Blackman, R. Nuter, P. Korneev, and V. T. Tikhonchuk, “Twisted kinetic plasma waves,” J. Russ. Laser Res. 40, 419–428 (2019).10.1007/s10946-019-09822-3
    [45]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [46]
    E. G. Zweibel and M. Yamada, “Perspectives on magnetic reconnection,” Proc. R. Soc. London, Ser. A 472, 20160479 (2016).10.1098/rspa.2016.0479
    [47]
    M. K. Georgoulis, A. Nindos, and H. Zhang, “The source and engine of coronal mass ejections,” Philos. Trans. R. Soc., A 377, 20180094 (2019).10.1098/rsta.2018.0094
    [48]
    G. A. Gary, “Plasma beta above a solar active region: Rethinking the paradigm,” Sol. Phys. 203, 71–86 (2001).10.1023/a:1012722021820
    [49]
    B. U. Ö. Sonnerup, G. Paschmann, I. Papamastorakis, N. Sckopke, G. Haerendel et al., “Evidence for magnetic field reconnection at the Earth’s magnetopause,” J. Geophys. Res. 86(A12), 10049–10067, (1981).10.1029/ja086ia12p10049
    [50]
    M. Lazar and S. Poedts, “Limits for the firehose instability in space plasmas,” Sol. Phys. 258, 119–128 (2009).10.1007/s11207-009-9405-y
    [51]
    M. Kruskal and J. L. Tuck, “The instability of a pinched fluid with a longitudinal magnetic field,” Proc. R. Soc. London, Ser. A 245, 222–234 (1958).10.1098/rspa.1958.0079
    [52]
    S. W. Allen, R. J. H. Dunn, A. C. Fabian, G. B. Taylor, and C. S. Reynolds, “The relation between accretion rate and jet power in X-ray luminous elliptical galaxies,” Mon. Not. R. Astron. Soc. 372, 21–30 (2006).10.1111/j.1365-2966.2006.10778.x
    [53]
    I. F. Mirabel and L. F. Rodríguez, “Sources of relativistic jets in the galaxy,” Annu. Rev. Astron. 37, 409–443 (1999).10.1146/annurev.astro.37.1.409
    [54]
    Y. Shen, “Observation and modelling of solar jets,” Proc. R. Soc. London, Ser. A 477, 20200217 (2021).10.1098/rspa.2020.0217
    [55]
    Y. Wan, O. Seemann, S. Tata, I. A. Andriyash, S. Smartsev et al., “Direct observation of relativistic broken plasma waves,” Nat. Phys. 18, 1186–1190 (2022).10.1038/s41567-022-01717-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return