Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
Liu Yan, Cui Tian, Li Da. Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP[J]. Matter and Radiation at Extremes, 2025, 10(2): 027802. doi: 10.1063/5.0252519
Citation: Liu Yan, Cui Tian, Li Da. Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP[J]. Matter and Radiation at Extremes, 2025, 10(2): 027802. doi: 10.1063/5.0252519

Leading role of satellite interstitial electrons in superconductivity in ternary superlithide Li14CP

doi: 10.1063/5.0252519
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: cuitian@jlu.edu.cn and dali@jlu.edu.cn
  • Received Date: 2024-12-10
  • Accepted Date: 2025-02-10
  • Available Online: 2025-03-01
  • Publish Date: 2025-03-01
  • The discovery of pressure-induced superconducting electrides has sparked a intense wave of interest in novel superconductors. However, opinions vary regarding the relationship between non-nuclear attractors (NNAs) and superconductivity, with two opposing views currently represented by the materials Li6P and Li6C. Here, we choose the ternary Li–C–P as a model system and reveal the underlying mechanism by which NNAs contribute to superconductivity. The loosely bound NNAs in the superlithide Li14CP covalently bond with Li and form unique satellite interstitial electrons (SIEs) around Li near the Fermi level, dominating the superconductivity. First-principles calculations show that the SIEs progressively increase in number and couple strongly with phonons at high pressure. Moreover, the Fermi surface nesting associated with SIEs induces phonon softening, further enhancing the electron–phonon coupling and giving the superlithide Li14CP a Tc of 10.6 K at 300 GPa. The leading role of SIEs in superconductivity is a general one and is also relevant to the recently predicted Li6P and Li6C. Our work presented here reshapes the understanding of NNA-dominated superconductivity and holds promise for guiding future discoveries and designs of novel high-temperature superconductors.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Yan Liu: Data curation (equal); Investigation (equal); Writing – original draft (equal). Tian Cui: Resources (lead); Supervision (lead); Writing – review & editing (lead). Da Li: Conceptualization (equal); Writing – review & editing (equal).
    Author Contributions
    The data that support the findings of this study are available within the article and its supplementary material and from the corresponding authors upon reasonable request.
  • loading
  • [1]
    M. S. Miao and R. Hoffmann, “High pressure electrides: A predictive chemical and physical theory,” Acc. Chem. Res. 47, 1311–1317 (2014).10.1021/ar4002922
    [2]
    X. Dong, A. R. Oganov, A. F. Goncharov, E. Stavrou, S. Lobanov et al., “A stable compound of helium and sodium at high pressure,” Nat. Chem. 9, 440–445 (2017).10.1038/nchem.2716
    [3]
    J. Cioslowski, “Nonnuclear attractors in the lithium dimeric molecule,” J. Phys. Chem. 94, 5496–5498 (1990).10.1021/j100377a015
    [4]
    K. Li, Y. T. Gong, J. J. Wang, and H. Hosono, “Electron-deficient-type electride Ca5Pb3: Extension of electride chemical space,” J. Am. Chem. Soc. 143, 8821–8828 (2021).10.1021/jacs.1c03278
    [5]
    H. Mizoguchi, S.-W. Park, T. Katase, G. V. Vazhenin, J. Kim et al., “Origin of metallic nature of Na3N,” J. Am. Chem. Soc. 143, 69–72 (2021).10.1021/jacs.0c11047
    [6]
    Z. Q. Wang, Y. T. Gong, M. L. Evans, Y. J. Yan, S. Y. Wang et al., “Machine learning-accelerated discovery of A2BC2 ternary electrides with diverse anionic electron densities,” J. Am. Chem. Soc. 145, 26412–26424 (2023).10.1021/jacs.3c10538
    [7]
    C. Liu, S. A. Nikolaev, W. Ren, and L. A. Burton, “Electrides: A review,” J. Mater. Chem. C 8, 10551–10567 (2020).10.1039/d0tc01165g
    [8]
    C. J. Pickard and R. J. Needs, “Dense low-coordination phases of lithium,” Phys. Rev. Lett. 102, 146401 (2009).10.1103/physrevlett.102.146401
    [9]
    H. Hosono and M. Kitano, “Advances in materials and applications of inorganic electrides,” Chem. Rev. 121, 3121–3185 (2021).10.1021/acs.chemrev.0c01071
    [10]
    D. Zhang, X. Chen, P. Jiang, Y. G. Li, X. H. Zheng et al., “Pressure-tuned one- to quasi-two-dimensional structural phase transition and superconductivity in LiP15,” Phys. Rev. B 105, 094109 (2022).10.1103/physrevb.105.094109
    [11]
    C. Z. Wang, S. H. Yi, S. Y. Liu, and J. Cho, “Underlying mechanism of charge transfer in Li-doped MgH16 at high pressure,” Phys. Rev. B 102, 184509 (2020).10.1103/physrevb.102.184509
    [12]
    C. Kokail, C. Heil, and L. Boeri, “Search for high-Tc conventional superconductivity at megabar pressures in the lithium-sulfur system,” Phys. Rev. B 94, 060502 (2016).10.1103/physrevb.94.060502
    [13]
    E. Zurek, X. D. Wen, and R. Hoffmann, “(Barely) Solid Li(NH3)4: The electronics of an expanded metal,” J. Am. Chem. Soc. 133, 3535–3547 (2011).10.1021/ja109397k
    [14]
    A. Hermann, A. McSorley, N. W. Ashcroft, and R. Hoffmann, “From Wade–Mingos to Zintl–Klemm at 100 GPa: Binary compounds of boron and lithium,” J. Am. Chem. Soc. 134, 18606–18618 (2012).10.1021/ja308492g
    [15]
    J. Botana, J. Brgoch, C. J. Hou, and M. S. Miao, “Iodine anions beyond −1: Formation of LinI (n = 2–5) and its interaction with quasiatoms,” Inorg. Chem. 55, 9377–9382 (2016).10.1021/acs.inorgchem.6b01561
    [16]
    Y. M. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan et al., “Transparent dense sodium,” Nature 458, 182–185 (2009).10.1038/nature07786
    [17]
    B. Wan, Y. F. Yuan, L. Zheng, Y. Xu, S. J. Zhao et al., “BaCu, a two-dimensional electride with Cu anions,” J. Am. Chem. Soc. 146, 17508–17516 (2024).10.1021/jacs.4c05723
    [18]
    Y. Xie, A. R. Oganov, and Y. M. Ma, “Novel high pressure structures and superconductivity of CaLi2,” Phys. Rev. Lett. 104, 177005 (2010).10.1103/physrevlett.104.177005
    [19]
    J. Y. Hou, X. Dong, A. R. Oganov, X. J. Weng, C. M. Hao et al., “Helium-bearing superconductor at high pressure,” Phys. Rev. B 106, L220501 (2022).10.1103/physrevb.106.l220501
    [20]
    Q. F. Wang, W. W. Cui, K. Gao, J. Chen, T. T. Gu et al., “Pressure-stabilized superconducting electride Li5C,” Phys. Rev. B 106, 054519 (2022).10.1103/physrevb.106.054519
    [21]
    Z. Y. Wan, C. Zhang, T. Y. Yang, W. J. Xu, and R. Q. Zhang, “Predicted superconductivity and superionic state in the electride Li5N under high pressure,” New J. Phys. 24, 113012 (2022).10.1088/1367-2630/ac9cff
    [22]
    H. M. Huang, Q. Zhu, V. A. Blatov, A. R. Oganov, X. T. Wei et al., “Novel topological motifs and superconductivity in Li-Cs system,” Nano Lett. 23, 5012–5018 (2023).10.1021/acs.nanolett.3c00875
    [23]
    X. H. Zhang, F. Li, A. Bergara, and G. C. Yang, “Pressure-induced superconductivity in Li-Te electrides,” Phys. Rev. B 104, 134505 (2021).10.1103/physrevb.104.134505
    [24]
    X. H. Zhang, Y. P. Zhao, A. Bergara, and G. C. Yang, “Superconducting Li10Se electride under pressure,” J. Chem. Phys. 156, 194112 (2022).10.1063/5.0092516
    [25]
    Y. P. Zhao, J. Y. Gao, X. H. Zhang, S. C. Ding, Y. Liu et al., “Superconducting Li11Sb2 electride at ambient pressure,” J. Mater. Chem. C 11, 17087–17092 (2023).10.1039/d3tc03485b
    [26]
    Z. Liu, Q. Zhuang, F. Tian, D. F. Duan, H. Song et al., “Proposed superconducting electride Li6C by sp-hybridized cage states at moderate pressures,” Phys. Rev. Lett. 127, 157002 (2021).10.1103/physrevlett.127.157002
    [27]
    Z. Y. Zhao, S. T. Zhang, T. Yu, H. Y. Xu, A. Bergara et al., “Predicted pressure-induced superconducting transition in electride Li6P,” Phys. Rev. Lett. 122, 097002 (2019).10.1103/physrevlett.122.097002
    [28]
    X. H. Zhang, Y. S. Yao, S. C. Ding, A. Bergara, F. Li et al., “Superconductivity in Li8Au electride,” Phys. Rev. B 107, L100501 (2023).10.1103/physrevb.107.l100501
    [29]
    C. S. Cao, H. S. Hu, J. Li, and W. H. E. Schwarz, “Physical origin of chemical periodicities in the system of elements,” Pure Appl. Chem. 91, 1969–1999 (2019).10.1515/pac-2019-0901
    [30]
    P. Schwerdtfeger, O. R. Smits, and P. Pyykkö, “The periodic table and the physics that drives it,” Nat. Rev. Chem. 4, 359–380 (2020).10.1038/s41570-020-0195-y
    [31]
    X. M. Wang, Y. Wang, J. J. Wang, S. N. Pan, Q. Lu et al., “Pressure stabilized lithium–aluminum compounds with both superconducting and superionic behaviors,” Phys. Rev. Lett. 129, 246403 (2022).10.1103/physrevlett.129.246403
    [32]
    Z. X. Guo, A. Bergara, X. H. Zhang, X. Li, S. C. Ding et al., “Superconductivity in Li8Hn electrides: The effect of interstitial anionic electrons on electron-phonon coupling,” Phys. Rev. B 109, 134505 (2024).10.1103/physrevb.109.134505
    [33]
    J. Y. You, B. Gu, G. Su, and Y. P. Feng, “Emergent Kagome electrides,” J. Am. Chem. Soc. 144, 5527–5534 (2022).10.1021/jacs.2c00177
    [34]
    X. H. Zhang, X. Du, Y. D. Wei, Z. Yang, X. Li et al., “Au with sp3 hybridization in Li5AuP2,” J. Phys. Chem. Lett. 13, 236–242 (2022).10.1021/acs.jpclett.1c03609
    [35]
    X. Zhang, Y. Zhao, and G. Yang, “Superconducting ternary hydrides under high pressure,” Comput. Mol. Sci. 12, e1582 (2022).10.1002/wcms.1582
    [36]
    J. J. Wang, Q. Zhu, Z. H. Wang, and H. Hosono, “Ternary inorganic electrides with mixed bonding,” Phys. Rev. B 99, 064104 (2019).10.1103/physrevb.99.064104
    [37]
    C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J. Phys. Condens. Matter 23, 053201 (2011).10.1088/0953-8984/23/5/053201
    [38]
    Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, “Crystal structure prediction via particle-swarm optimization,” Phys. Rev. B 82, 094116 (2010).10.1103/physrevb.82.094116
    [39]
    Z. H. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song et al., “Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure,” Phys. Rev. Lett. 128, 047001 (2022).10.1103/physrevlett.128.047001
    [40]
    J. Jiang, Y. R. Gao, L. Li, Y. Liu, W. D. Zhu et al., “Rich proton dynamics and phase behaviours of nanoconfined ices,” Nat. Phys. 20, 456–464 (2024).10.1038/s41567-023-02341-8
    [41]
    Y. Liu, R. Wang, Z. G. Wang, D. Li, and T. Cui, “Formation of twelve-fold iodine coordination at high pressure,” Nat. Commun. 13, 412 (2022).10.1038/s41467-022-28083-4
    [42]
    J. Lv, Y. C. Wang, L. Zhu, and Y. M. Ma, “Predicted novel high-pressure phases of lithium,” Phys. Rev. Lett. 106, 015503 (2011).10.1103/physrevlett.106.015503
    [43]
    J. A. Flores-Livas, L. Lehtovaara, M. Amsler, S. Goedecker, S. Pailhès et al., “Raman activity of sp3 carbon allotropes under pressure: A density functional theory study,” Phys. Rev. B 85, 155428 (2012).10.1103/physrevb.85.155428
    [44]
    J. A. Flores-Livas, A. Sanna, A. P. Drozdov, L. Boeri, G. Profeta et al., “Interplay between structure and superconductivity: Metastable phases of phosphorus under pressure,” Phys. Rev. Materials 1, 024802 (2017).10.1103/physrevmaterials.1.024802
    [45]
    M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip et al., “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717 (2002).10.1088/0953-8984/14/11/301
    [46]
    G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15–50 (1996).10.1016/0927-0256(96)00008-0
    [47]
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).10.1103/physrevlett.77.3865
    [48]
    W. Tang, E. Sanville, and G. Henkelman, “A grid-based Bader analysis algorithm without lattice bias,” J. Phys. Condens. Matter 21, 084204 (2009).10.1088/0953-8984/21/8/084204
    [49]
    V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, “Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets,” J. Phys. Chem. A 115, 5461–5466 (2011).10.1021/jp202489s
    [50]
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., “Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502
    [51]
    G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999).10.1103/physrevb.59.1758
    [52]
    P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors reanalyzed,” Phys. Rev. B 12, 905–922 (1975).10.1103/physrevb.12.905
    [53]
    H. Xiao, Y. Dan, B. Suo, and X. Chen, “Comment on ‘Accelerated discovery of new 8-electron half-Heusler compounds as promising energy and topological quantum materials,’” J. Phys. Chem. C 124, 2247–2249 (2020).10.1021/acs.jpcc.9b10295
    [54]
    T. Bazhirov, J. Noffsinger, and M. L. Cohen, “Superconductivity and electron-phonon coupling in lithium at high pressures,” Phys. Rev. B 82, 184509 (2010).10.1103/physrevb.82.184509
    [55]
    Y. B. Ma, D. F. Duan, Z. J. Shao, H. Y. Yu, H. Y. Liu et al., “Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure,” Phys. Rev. B 96, 144518 (2017).10.1103/physrevb.96.144518
    [56]
    C. Z. Wang, S. Y. Liu, H. Jeon, S. Yi, Y. Bang et al., “Effect of hole doping on superconductivity in compressed CeH9 at high pressures,” Phys. Rev. B 104, L020504 (2021).10.1103/physrevb.104.l020504
    [57]
    K. Yang, W. W. Cui, J. Hao, J. M. Shi, and Y. W. Li, “Superconductivity of graphenelike hydrogen in H2He at high pressure,” Phys. Rev. B 107, 024501 (2023).10.1103/physrevb.107.024501
    [58]
    Z. Liu, D. F. Duan, Q. Zhuang, and T. Cui, “High-temperature superconductivity in electrides dominated by hybridized p-orbital-like electride states,” Phys. Rev. B 108, L100507 (2023).10.1103/physrevb.108.l100507
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (12) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return