Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 10 Issue 3
May  2025
Turn off MathJax
Article Contents
Renner O., Klimo O., Krus M., Nicolaï Ph., Poletaeva A., Bukharskii N., Tikhonchuk V. T.. Hot-electron generation in high-intensity laser–matter experiments with copper targets[J]. Matter and Radiation at Extremes, 2025, 10(3): 037403. doi: 10.1063/5.0246250
Citation: Renner O., Klimo O., Krus M., Nicolaï Ph., Poletaeva A., Bukharskii N., Tikhonchuk V. T.. Hot-electron generation in high-intensity laser–matter experiments with copper targets[J]. Matter and Radiation at Extremes, 2025, 10(3): 037403. doi: 10.1063/5.0246250

Hot-electron generation in high-intensity laser–matter experiments with copper targets

doi: 10.1063/5.0246250
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: renner@fzu.cz
  • Received Date: 2024-10-31
  • Accepted Date: 2025-03-14
  • Available Online: 2025-11-28
  • Publish Date: 2025-05-01
  • We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion. Using time-resolved imaging, it is found that in the case of massive targets, the hot-electron generation follows the laser pulse intensity with a short delay needed for favorable plasma formation. Conversely, a significant delay in the x-ray emission compared with the laser pulse intensity profile is observed in the case of thin targets. Theoretical analysis and numerical simulations suggest that this is related to radiation preheating of the foil and the increase in hot-electron lifetime in a hot expanding plasma.
  • The authors have no conflicts to disclose.
    Conflict of Interest
    Author Contributions
    O. Renner: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). O. Klimo: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). M. Krus: Data curation (equal); Investigation (equal); Methodology (equal); Validation (equal); Writing – original draft (equal); Writing – review & editing (equal). P. Nicolaï: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). A. Poletaeva: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). N. Bukharskii: Data curation (equal); Formal analysis (equal); Methodology (equal); Software (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). V. T. Tikhonchuk: Conceptualization (lead); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Supervision (equal); Validation (equal); Writing – original draft (lead); Writing – review & editing (lead).
    The data that support the findings of this study are available from the corresponding author upon reasonable request.
  • loading
  • [1]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald et al., “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001
    [2]
    S. Atzeni, X. Ribeyre, G. Schurtz, A. j. Schmitt, B. Canaud et al., “Shock ignition of thermonuclear fuel: Principles and modelling,” Nucl. Fusion 54, 054008 (2014).10.1088/0029-5515/54/5/054008
    [3]
    D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger et al., “Physics issues for shock ignition,” Nucl. Fusion 54, 054009 (2014).10.1088/0029-5515/54/5/054009
    [4]
    W. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley-CRC Press, Redwood, CA, 1988).
    [5]
    V. Tikhonchuk, Particle Kinetics and Laser Plasma Interactions (Cambridge Scholar Publishing, 2024).
    [6]
    O. Klimo, S. Weber, V. T. Tikhonchuk, and J. Limpouch, “Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario,” Plasma Phys. Control. Fusion 52, 055013 (2010).10.1088/0741-3335/52/5/055013
    [7]
    S. Zhang, C. M. Krauland, J. Peebles, J. Li, F. N. Beg et al., “Experimental study of hot electron generation in shock ignition relevant high-intensity regime with large scale hot plasmas,” Phys. Plasmas 27, 023111 (2020).10.1063/1.5119250
    [8]
    K. Jungwirth, A. Cejnarova, L. Juha, B. Kralikova, J. Krasa et al., “The Prague asterix laser system,” Phys. Plasmas 8, 2495 (2001).10.1063/1.1350569
    [9]
    G. Cristoforetti, L. Antonelli, D. Mancelli, S. Atzeni, F. Baffigi et al., “Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma,” High Power Laser Sci. Eng. 7, e51 (2019).10.1017/hpl.2019.37
    [10]
    T. Pisarczyk, M. Kalal, S. Y. Gus’kov, D. Batani, O. Renner et al., “Hot electron retention in laser plasma created under terawatt subnanosecond irradiation of Cu targets,” Phys. Plasma Control. Fusion 62, 115020 (2020).10.1088/1361-6587/abb74b
    [11]
    E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, A. S. Martynenko et al., “Characterization of hot electrons generated by laser–plasma interaction at shock ignition intensities,” Matter Radiat. Extremes 8, 065602 (2023).10.1063/5.0157168
    [12]
    G. Cristoforetti, F. Baffigi, D. Batani, R. Dudzak, R. Fedosejevs et al., “Investigation on the origin of hot electrons in laser plasma interaction at shock ignition intensities,” Sci. Rep. 13, 20681 (2023).10.1038/s41598-023-46189-7
    [13]
    Y. J. Gu, O. Klimo, P. Nicolaï, S. Shekhanov, S. Weber et al., “Collective absorption of laser radiation in plasma at sub-relativistic intensities,” High Power Laser Sci. Eng. 7, e39 (2019).10.1017/hpl.2019.25
    [14]
    W. Theobald, R. Nora, W. Seka, M. Lafon, K. S. Anderson et al., “Spherical strong-shock generation for shock-ignition inertial fusion,” Phys. Plasmas 22, 056310 (2015).10.1063/1.4920956
    [15]
    W. Theobald, A. Bose, R. Yan, R. Betti, M. Lafon et al., “Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition,” Phys. Plasmas 24, 120702 (2017).10.1063/1.4986797
    [16]
    M. Šmíd, O. Renner, A. Colaïtis, V. T. Tikhonchuk, T. Schlegel et al., “Characterization of suprathermal electrons inside a laser-accelerated plasma via highly-resolved Kα-emission,” Nat. Commun. 10, 4212 (2019).10.1038/s41467-019-12008-9
    [17]
    O. Renner and F. B. Rosmej, “Challenges of x-ray spectroscopy in investigations of matter under extreme conditions,” Matter Radiat. Extremes 4, 024201 (2019).10.1063/1.5086344
    [18]
    H. Sawada, T. Daykin, H. S. McLean, H. Chen, P. K. Patel et al., “Two-color monochromatic x-ray imaging with a single short-pulse laser,” Rev. Sci. Instrum. 88, 063502 (2017).10.1063/1.4985729
    [19]
    O. Renner, M. Šmíd, D. Batani, and L. Antonelli, “Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy,” Plasma Phys. Control. Fusion 58, 075007 (2016).10.1088/0741-3335/58/7/075007
    [20]
    [21]
    S. G. Podorov, O. Renner, O. Wehrhan, and E. Förster, “Optimized polychromatic x-ray imaging with asymmetrically cut bent crystals,” J. Phys. D: Appl. Phys. 34, 2363 (2001).10.1088/0022-3727/34/15/317
    [22]
    V. Horný and O. Klimo, “Hot electron refluxing in the short intense laser pulse interactions with solid targets and its influence on K-α radiation,” Nukleonika 60, 233 (2015).10.1515/nuka-2015-0045
    [23]
    J. C. Zhao, L. H. Cao, J. H. Zheng, Z. Q. Zhao, Z. J. Liu et al., “The model of the influence of the electron refluxing on the electron transport and Kα emission,” Laser Part. Beams 35, 483 (2017).10.1017/s0263034617000465
    [24]
    L. G. Huang, M. Molodtsova, A. Ferrari, A. L. Garcia, T. Toncian et al., “Dynamics of hot refluxing electrons in ultra-short relativistic laser foil interactions,” Phys. Plasmas 29, 023102 (2022).10.1063/5.0077222
    [25]
    P. Neumayer, B. Aurand, M. Basko, B. Ecker, P. Gibbon et al., “The role of hot electron refluxing in laser-generated K-alpha sources,” Phys. Plasmas 17, 103103 (2010).10.1063/1.3486520
    [26]
    S. Singh, M. Krupka, V. Istokskaia, J. Krasa, L. Giuffrida et al., “Hot electron and x-ray generation by sub-ns kJ-class laser-produced tantalum plasma,” Plasma Phys. Control. Fusion 64, 105012 (2022).10.1088/1361-6587/ac8bf3
    [27]
    S. Y. Gus’kov, P. A. Kuchugov, R. A. Yakhin, and N. V. Zmitrenko, “Effect of ‘wandering’ and other features of energy transfer by fast electrons in a direct-drive inertial confinement fusion target,” Plasma Phys. Control. Fusion 61, 055003 (2019).10.1088/1361-6587/ab0641
    [28]
    J. Breil, S. Galera, and P.-H. Maire, “Multi-material ALE computation in inertial confinement fusion code CHIC,” Comput. Fluids 46, 161 (2011).10.1016/j.compfluid.2010.06.017
    [29]
    T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Control. Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001
    [30]
    J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello et al., “Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation,” Comput. Phys. Commun. 222, 351 (2018).10.1016/j.cpc.2017.09.024
    [31]
    S. D. Baton, E. Le Bel, S. Brygoo, X. Ribeyre, C. Rousseaux et al., “Shock generation comparison with planar and hemispherical targets in shock ignition relevant experiment,” Phys. Plasmas 24, 092708 (2017).10.1063/1.4989525
    [32]
    E. Llor Aisa, X. Ribeyre, G. Duchateau, T. Nguyen-Bui, V. T. Tikhonchuk et al., “The role of hot electrons in the dynamics of a laser-driven strong converging shock,” Phys. Plasmas 24, 112711 (2017).10.1063/1.5003814
    [33]
    L. Antonelli, J. Trela, F. Barbato, G. Boutoux, P. Nicolaï et al., “Laser-driven strong shocks with infrared lasers at intensity of 1016 W/cm2,” Phys. Plasmas 26, 112708 (2019).10.1063/1.5119697
    [34]
    A. Colaïtis, G. Duchateau, X. Ribeyre, Y. Maheut, G. Boutoux et al., “Coupled hydrodynamic model for laser-plasma interaction and hot electron generation,” Phys. Rev. E 92, 041101 (2015).10.1103/physreve.92.041101
    [35]
    A. Colaïtis, X. Ribeyre, E. Le Bel, G. Duchateau, P. Nicolaï et al., “Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions,” Phys. Plasmas 23, 072703 (2016).10.1063/1.4958808
    [36]
    S. Y. Gus’kov, “Amplification of separated electric charge field due to the capture of laser-produced fast electrons oscillating near thin target,” Phys. Plasmas 27, 122109 (2020).10.1063/5.0023753
    [37]
    K. Kanaya and S. Okayama, “Penetration and energy-loss theory of electrons in solid targets,” J. Phys. D: Appl. Phys. 5, 43 (1972).10.1088/0022-3727/5/1/308
    [38]
    M. Passoni, V. T. Tikhonchuk, M. Lontano, and V. Y. Bychenkov, “Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution,” Phys. Rev. E 69, 026411 (2004).10.1103/physreve.69.026411
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return