| Citation: | Wang Zhao, Cheng Rui, Jin Xuejian, Chen Yanhong, Shi Lulin, Wang Guodong, Zhou Zexian, Iqbal Zakir, Chen Yupeng, Zhang Jinfu, Wu Xiaoxia, Lei Yu, Wang Yuyu, Zhao Yongtao, Liu Shuai, Chen Liangwen, Yang Jie. Magnetic transport and radiation properties during compression of a magnetized plasma[J]. Matter and Radiation at Extremes, 2025, 10(3): 037401. doi: 10.1063/5.0244786 |
| [1] |
H. Ji, W. Daughton, J. Jara-Almonte, A. Le, A. Stanier et al., “Magnetic reconnection in the era of exascale computing and multiscale experiments,” Nat. Rev. Phys. 4, 263–282 (2022).10.1038/s42254-021-00419-x
|
| [2] |
P. Tzeferacos, A. Rigby, A. F. A. Bott, A. R. Bell, R. Bingham et al., “Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma,” Nat. Commun. 9, 591 (2018).10.1038/s41467-018-02953-2
|
| [3] |
A. S. Liao, S. Li, H. Li, K. Flippo, D. Barnak et al., “Design of a new turbulent dynamo experiment on the OMEGA-EP,” Phys. Plasmas 26, 032306 (2019).10.1063/1.5081062
|
| [4] |
G. G. Howes, “Laboratory space physics: Investigating the physics of space plasmas in the laboratory,” Phys. Plasmas 25, 055501 (2018).10.1063/1.5025421
|
| [5] |
A. S. Bondarenko, D. B. Schaeffer, E. T. Everson, S. E. Clark, B. R. Lee et al., “Collisionless momentum transfer in space and astrophysical explosions,” Nat. Phys. 13, 573–577 (2017).10.1038/nphys4041
|
| [6] |
J. L. Burch, R. B. Torbert, T. D. Phan, L.-J. Chen, T. E. Moore et al., “Electron-scale measurements of magnetic reconnection in space,” Science 352, aaf2939 (2016).10.1126/science.aaf2939
|
| [7] |
S. V. Lebedev, A. Frank, and D. D. Ryutov, “Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities,” Rev. Mod. Phys. 91, 025002 (2019).10.1103/revmodphys.91.025002
|
| [8] |
D. R. Russell, G. C. Burdiak, J. J. Carroll-Nellenback, J. W. D. Halliday, J. D. Hare et al., “Perpendicular subcritical shock structure in a collisional plasma experiment,” Phys. Rev. Lett. 129, 225001 (2022).10.1103/physrevlett.129.225001
|
| [9] |
Y. Kuramitsu, T. Moritaka, Y. Sakawa, T. Morita, T. Sano et al., “Magnetic reconnection driven by electron dynamics,” Nat. Commun. 9, 5109 (2018).10.1038/s41467-018-07415-3
|
| [10] |
B. Srinivasan, G. Dimonte, and X.-Z. Tang, “Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas,” Phys. Rev. Lett. 108, 165002 (2012).10.1103/physrevlett.108.165002
|
| [11] |
G. D. Fleishman, G. M. Nita, B. Chen, S. Yu, and D. E. Gary, “Solar flare accelerates nearly all electrons in a large coronal volume,” Nature 606, 674–677 (2022).10.1038/s41586-022-04728-8
|
| [12] |
G. D. Fleishman, D. E. Gary, B. Chen, N. Kuroda, S. Yu et al., “Decay of the coronal magnetic field can release sufficient energy to power a solar flare,” Science 367, 278–280 (2020).10.1126/science.aax6874
|
| [13] |
J. Birn, M. Hesse, G. Haerendel, W. Baumjohann, and K. Shiokawa, “Flow braking and the substorm current wedge,” J. Geophys. Res.: Space Phys. 104, 19895–19903, (1999).10.1029/1999ja900173
|
| [14] |
S. A. Fuselier, S. M. Petrinec, K. J. Trattner, K. Llera, J. L. Burch et al., “Plasma properties in the Earth’s magnetosheath near the subsolar magnetopause: Implications for geocoronal density estimates,” Geophys. Res. Lett. 50, e2023GL105553, (2023).10.1029/2023gl105553
|
| [15] |
J. M. Levesque, A. S. Liao, P. Hartigan, R. P. Young, M. Trantham et al., “Experimental observations of detached bow shock formation in the interaction of a laser-produced plasma with a magnetized obstacle,” Phys. Plasmas 29, 012106 (2022).10.1063/5.0062254
|
| [16] |
J. Bally, “Protostellar outflows,” Annu. Rev. Astron. Astrophys. 54, 491–528 (2016).10.1146/annurev-astro-081915-023341
|
| [17] |
C. A. Walsh, R. Florido, M. Bailly-Grandvaux, F. Suzuki-Vidal, J. P. Chittenden et al., “Exploring extreme magnetization phenomena in directly driven imploding cylindrical targets,” Plasma Phys. Controlled Fusion 64, 025007 (2022).10.1088/1361-6587/ac3f25
|
| [18] |
J. Ongena, R. Koch, R. Wolf, and H. Zohm, “Magnetic-confinement fusion,” Nat. Phys. 12, 398–410 (2016).10.1038/nphys3745
|
| [19] |
J. D. Moody, B. B. Pollock, H. Sio, D. J. Strozzi, D. D. M. Ho et al., “Increased ion temperature and neutron yield observed in magnetized indirectly driven D2-filled capsule implosions on the National Ignition Facility,” Phys. Rev. Lett. 129, 195002 (2022).10.1103/physrevlett.129.195002
|
| [20] |
J. R. Davies, R. Betti, P. Y. Chang, and G. Fiksel, “The importance of electrothermal terms in Ohm’s law for magnetized spherical implosions,” Phys. Plasmas 22, 112703 (2015).10.1063/1.4935286
|
| [21] |
J. A. Slavin, G. A. DiBraccio, D. J. Gershman, S. M. Imber, G. K. Poh et al., “MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions,” J. Geophys. Res.: Space Phys. 119, 8087–8116, (2014).10.1002/2014ja020319
|
| [22] |
R. T. Desai, M. P. Freeman, J. P. Eastwood, J. W. B. Eggington, M. O. Archer et al., “Interplanetary shock-induced magnetopause motion: Comparison between theory and global magnetohydrodynamic simulations,” Geophys. Res. Lett. 48, e2021GL092554, (2021).10.1029/2021gl092554
|
| [23] |
S. E. Milan, L. B. N. Clausen, J. C. Coxon, J. A. Carter, M. T. Walach et al., “Overview of solar wind–magnetosphere–ionosphere–atmosphere coupling and the generation of magnetospheric currents,” Space Sci. Rev. 206, 547–573 (2017).10.1007/s11214-017-0333-0
|
| [24] |
F. Suzuki-Vidal, M. Bocchi, S. V. Lebedev, G. F. Swadling, G. Burdiak et al., “Interaction of a supersonic, radiatively cooled plasma jet with an ambient medium,” Phys. Plasmas 19, 022708 (2012).10.1063/1.3685607
|
| [25] |
C. A. Walsh, J. P. Chittenden, K. McGlinchey, N. P. L. Niasse, and B. D. Appelbe, “Self-generated magnetic fields in the stagnation phase of indirect-drive implosions on the National Ignition Facility,” Phys. Rev. Lett. 118, 155001 (2017).10.1103/physrevlett.118.155001
|
| [26] |
J. D. Sadler, C. A. Walsh, and H. Li, “Symmetric set of transport coefficients for collisional magnetized plasma,” Phys. Rev. Lett. 126, 075001 (2021).10.1103/physrevlett.126.075001
|
| [27] |
C. A. Walsh, J. P. Chittenden, D. W. Hill, and C. Ridgers, “Extended-magnetohydrodynamics in under-dense plasmas,” Phys. Plasmas 27, 022103 (2020).10.1063/1.5124144
|
| [28] |
B. Srinivasan and X.-Z. Tang, “Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas,” Phys. Plasmas 19, 082703 (2012).10.1063/1.4742176
|
| [29] |
C. Arran, P. Bradford, A. Dearling, G. S. Hicks, S. Al-Atabi et al., “Measurement of magnetic cavitation driven by heat flow in a plasma,” Phys. Rev. Lett. 131, 015101 (2023).10.1103/physrevlett.131.015101
|
| [30] |
J. D. Sadler, C. A. Walsh, Y. Zhou, and H. Li, “Role of self-generated magnetic fields in the inertial fusion ignition threshold,” Phys. Plasmas 29, 072701 (2022).10.1063/5.0091529
|
| [31] |
J. D. Sadler, H. Li, and B. M. Haines, “Magnetization around mix jets entering inertial confinement fusion fuel,” Phys. Plasmas 27, 072707 (2020).10.1063/5.0012959
|
| [32] |
C. A. Walsh, J. D. Sadler, and J. R. Davies, “Updated magnetized transport coefficients: Impact on laser-plasmas with self-generated or applied magnetic fields,” Nucl. Fusion 61, 116025 (2021).10.1088/1741-4326/ac25c1
|
| [33] |
C. A. Frank and A. Bose, “Self-generated magnetic fields in the hot spot of direct-drive cryogenic implosions at Omega,” Phys. Plasmas 31, 082709 (2024).10.1063/5.0211922
|
| [34] |
M. R. Gomez, S. A. Slutz, C. A. Jennings, D. J. Ampleford, M. R. Weis et al., “Performance scaling in magnetized liner inertial fusion experiments,” Phys. Rev. Lett. 125, 155002 (2020).10.1103/physrevlett.125.155002
|
| [35] |
B. M. Walsh and Y. Zou, “The role of magnetospheric plasma in solar wind-magnetosphere coupling: A review,” J. Atmos. Sol.-Terr. Phys. 219, 105644 (2021).10.1016/j.jastp.2021.105644
|
| [36] |
L. Dai, M. Zhu, Y. Ren, W. Gonzalez, C. Wang et al., “Global-scale magnetosphere convection driven by dayside magnetic reconnection,” Nat. Commun. 15, 639 (2024).10.1038/s41467-024-44992-y
|
| [37] |
C. T. Russell, R. J. Strangeway, C. Zhao, B. J. Anderson, W. Baumjohann et al., “Structure, force balance, and topology of Earth’s magnetopause,” Science 356, 960–963 (2017).10.1126/science.aag3112
|
| [38] |
S. A. Fuselier and W. S. Lewis, “Properties of near-Earth magnetic reconnection from in-situ observations,” Space Sci. Rev. 160, 95–121 (2011).10.1007/s11214-011-9820-x
|
| [39] |
O. A. Hurricane, P. K. Patel, R. Betti, D. H. Froula, S. P. Regan et al., “Physics principles of inertial confinement fusion and U.S. program overview,” Rev. Mod. Phys. 95, 025005 (2023).10.1103/revmodphys.95.025005
|
| [40] |
B. Appelbe, A. L. Velikovich, M. Sherlock, C. Walsh, A. Crilly et al., “Magnetic field transport in propagating thermonuclear burn,” Phys. Plasmas 28, 032705 (2021).10.1063/5.0040161
|
| [41] |
P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti et al., “Fusion yield enhancement in magnetized laser-driven implosions,” Phys. Rev. Lett. 107, 035006 (2011).10.1103/physrevlett.107.035006
|
| [42] |
M. Hohenberger, P. Y. Chang, G. Fiksel, J. P. Knauer, R. Betti et al., “Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser,” Phys. Plasmas 19, 056306 (2012).10.1063/1.3696032
|
| [43] |
C. A. Walsh and D. S. Clark, “Biermann battery magnetic fields in ICF capsules: Total magnetic flux generation,” Phys. Plasmas 28, 092705 (2021).10.1063/5.0059366
|
| [44] |
J. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, DC, 2018).
|
| [45] |
Z. Wang, R. Cheng, G. Wang, X. Jin, Y. Tang et al., “Observation of plasma dynamics in a theta pinch by a novel method,” Matter Radiat. Extremes 8, 045901 (2023).10.1063/5.0144921
|
| [46] |
C. Teske, J. Jacoby, F. Senzel, and W. Schweizer, “Energy transfer efficiency of a spherical theta pinch,” Phys. Plasmas 17, 043501 (2010).10.1063/1.3368795
|
| [47] |
H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press; Springer Science, 1997).
|
| [48] |
S. Lee, S. H. Saw, P. C. K. Lee, M. Akel, V. Damideh et al., “A model code for the radiative theta pinch,” Phys. Plasmas 21, 072501 (2014).10.1063/1.4886359
|
| [49] |
R. Fitzpatrick, Plasma Physics: An Introduction (CRC Press/Taylor & Francis Group, 2014).
|
| [50] |
W. W. Yarborough and J. P. Barach, “Current sheet observations in a small theta pinch,” Phys. Fluids 18, 105 (1975).10.1063/1.860981
|
| [51] |
P. A. Silberg, “Some efficiency measurements of the theta-pinch,” J. Appl. Phys. 37, 2155–2161 (1966).10.1063/1.1708751
|
| [52] |
E. C. Hansen, J. R. Davies, D. H. Barnak, R. Betti, E. M. Campbell et al., “Neutron yield enhancement and suppression by magnetization in laser-driven cylindrical implosions,” Phys. Plasmas 27, 062703 (2020).10.1063/1.5144447
|
| [53] |
C. A. Walsh, S. O’Neill, J. P. Chittenden, A. J. Crilly, B. Appelbe et al., “Magnetized ICF implosions: Scaling of temperature and yield enhancement,” Phys. Plasmas 29, 042701 (2022).10.1063/5.0081915
|
| [54] |
L. L. Hood and G. Schubert, “Inhibition of solar wind impingement on mercury by planetary induction currents,” J. Geophys. Res.: Space Phys. 84, 2641–2647, (2012).10.1029/ja084ia06p02641
|
| [55] |
R. Fitzpatrick, Theoretical Fluid Mechanics (IOP Publishing, 2017).
|
| [56] |
B. Seo and P. M. Bellan, “Experimental investigation of the compression and heating of an MHD-driven jet impacting a target cloud,” Phys. Plasmas 25, 112703 (2018).10.1063/1.5045678
|
| [57] |
E. Hinnov and J. G. Hirschberg, “Electron-ion recombination in dense plasmas,” Phys. Rev. 125, 795–801 (1962).10.1103/physrev.125.795
|
| [58] |
S. E. Wurzel and S. C. Hsu, “Progress toward fusion energy breakeven and gain as measured against the Lawson criterion,” Phys. Plasmas 29, 062103 (2022).10.1063/5.0083990
|
| [59] |
F. Suzuki-Vidal, S. V. Lebedev, A. Ciardi, L. A. Pickworth, R. Rodriguez et al., “Bow shock fragmentation driven by a thermal instability in laboratory astrophysics experiments,” Astrophys. J. 815, 96 (2015).10.1088/0004-637x/815/2/96
|